Multicomponent Force Plate

Type 9285

with Glass Top Plate for Biomechanics, $F_{\rm z} \ 0 \ ... \ 5 \ kN$

Multicomponent force plate with glass top plate for measuring ground reaction forces, moments and the center of pressure in biomechanics.

- Glass top plate allows recording of contact surface
- Wide measuring range
- Excellent measuring accuracy
- Excellent accuracy of center of pressure (COP)
- Threshold $F_z < 10 \text{ mN}$

Description

Multicomponent force plate Type 9285 consists of a base frame on which four piezoelectric 3-component force sensors under a high preload are mounted. A 600x400 mm triple-layer composite glass plate is mounted on these sensors. The very low crosstalk values of the sensors in conjunction with the special design principle ensure excellent accuracy of the center of pressure. The output signals are processed in an external charge amplifier for subsequent acquisition with any common motion analysis system.

Application

This force plate is designed for special gait and balance analysis applications. The glass plate allows simultaneous force measurement and photographic or cinematographic recording of the contact surface from below. Despite the wide measuring range (0 ... 5 kN), this force plate offers excellent accuracy and linearity across the entire spectrum of applications and guarantees overload protection up to 7,5 kN. A larger force plate with external dimensions of 900x600 mm is available on request. It can be equipped with an built-in charge amplifier.

Fig. 1: Multicomponent Force Plate Type 9285

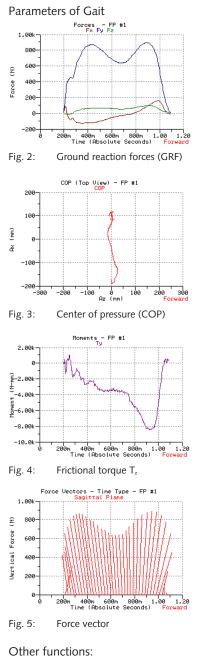
Technical Data

FzKN0Overload F_{xr} , F_y kN $-3,75/3,7$ F_z kN $0/7$ Linearity%FSO $\leq \pm 0$ Hysteresis%FSO $\leq \pm 0$ Hysteresis%FSO $< \leq \pm 0$ Crosstalk $F_x < -> F_y$ % $F_z -> F_x$, $F_y -> F_z$ % $< \pm 0$ Rigidityx-axle ($a_y = 0$)N/µm ≈ 12 y-axle ($a_x = 0$)N/µm ≈ 12 y-axle ($a_x = 0$)N/µm ≈ 12 Zoraxle ($a_y = a_y = 0$)N/µm ≈ 12 Natural frequency f_0 (x, y)Hz ≈ 30 f_0 (z)Hz ≈ 50 Operating temperature range°C $-20 \dots 5$ Weightkg4Degree of protectionEN 60529:1992IP6Refractive index of glass top platen $\approx 1,5$ Calibrated range F_x , F_y kN $0 \dots 0,2$ F_z KN $0 \dots 0,2$ <th>Dimensions</th> <th></th> <th>mm</th> <th>600x400x150</th>	Dimensions		mm	600x400x150	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Range	F _x , F _v	kN	-2,5 2,5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	Fz	kN	0 5	
Linearity% FSO $\leq \pm 0$,Hysteresis% FSO<	Overload	F _x , F _y	kN	-3,75/3,75	
Hysteresis% FSOCrosstalk $F_x < -> F_y$ % $F_x, F_y -> F_z$ % $F_z -> F_x, F_y$ %Rigidityx-axle ($a_y = 0$)N/µm $x - axle (a_y = 0)$ N/µm ≈ 12 y -axle ($a_x = 0$)N/µm ≈ 12 y -axle ($a_x = 0$)N/µm ≈ 12 y -axle ($a_x = 0$)N/µm ≈ 12 y -axle ($a_x = 0$)N/µm ≈ 12 z -axle ($a_y = a_y = 0$)N/µm ≈ 12 y -axle ($a_x = 0$)N/µm ≈ 22 Natural frequency $f_0 (x, y)$ Hz ≈ 30 $f_0 (z)$ Hz ≈ 50 Operating temperature range°C $-20 \dots 5$ Weightkg4Degree of protectionEN 60529:1992IP6Refractive index of glass top platen $\approx 1,5$ Calibrated range F_x, F_y kN $0 \dots 0,2$ F_z kN $0 \dots 0,2$ F_x, F_y, F_z mN<1		Fz	kN	0/7,5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Linearity	%FSO		≤±0,5	
FactorFactorFactorFactor $F_{xr}, F_y \rightarrow F_z$ % $< \pm$ Rigidity x -axle ($a_y = 0$) $N/\mu m$ ≈ 12 y -axle ($a_x = 0$) $N/\mu m$ ≈ 12 y -axle ($a_x = 0$) $N/\mu m$ ≈ 12 z -axle ($a_y = a_y = 0$) $N/\mu m$ ≈ 12 Natural frequency f_0 (x, y) Hz ≈ 30 f_0 (z) Hz $\pi 30$ f_0 (z) Hz $\pi 30$ f_0 (z) Hz $\pi 30$ f_0 (z) Hz <td< td=""><td>Hysteresis</td><td>%FSO</td><td></td><td><1</td></td<>	Hysteresis	%FSO		<1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Crosstalk	$F_x \ll F_y$	%	<±2	
Rigidityx-axle $(a_y = 0)$ N/µm ≈ 12 y-axle $(a_x = 0)$ N/µm ≈ 11 z-axle $(a_y = a_y = 0)$ N/µm ≈ 21 Natural frequency $f_0 (x, y)$ Hz ≈ 30 $f_0 (z)$ Hz ≈ 50 Operating temperature range°C $-20 \dots 5$ Weightkg4Degree of protectionEN 60529:1992IP66Refractive index of glass top platen $\approx 1,5$ Calibrated range F_{xr} , F_y kN $-2,5 \dots 2,$ F_z kN00,Calibrated partial range F_{xr} , F_y kN $0 \dots 0,$ F_z kN00,Threshold F_{xr} , F_{yr} , F_z mN <1 Sensitivity F_{xr} , F_y pC/N $-7,4$		F_x , $F_y \rightarrow F_z$	%	<±2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$F_z \rightarrow F_x$, F_y	%	<±1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rigidity	x-axle ($a_y = 0$)	N/µm	≈120	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		y-axle ($a_x = 0$)	N/µm	≈115	
$\label{eq:response} \begin{array}{c c c c c c c c c c c c c c c c c c c $		z-axle ($a_y = a_y = 0$)	N/µm	≈25	
Operating temperature range°C-20Weightkg4Degree of protectionEN 60529:1992IP6Refractive index of glass top platen $\approx 1,5$ Calibrated range F_{xr} , F_y kN $-2,5$ F_z kN0Calibrated partial range F_{xr} , F_y kN 0 F_z kN00,2 F_z kN00,2 F_z kN00,2Sensitivity F_{xr} , F_{yr} , F_z mN<1	Natural frequency	f _o (x, y)	Hz	≈300	
Weightkg4Degree of protectionEN 60529:1992IP6Refractive index of glass top platen $\approx 1,5$ Calibrated range F_{xr} , F_y kN $-2,5 \dots 2,$ F_z kN0 \dotsCalibrated partial range F_{xr} , F_y kN $0 \dots 0, 2$ F_z kN0 \dots 0, 2 F_z kN0 \dots 0, 2Threshold F_{xr} , F_{yr} , F_z mN<1		f _o (z)	Hz	≈500	
Degree of protectionEN 60529:1992IPGRefractive index of glass top platen $\approx 1,5$ Calibrated range F_{xr} , F_y kN $-2,5 \dots 2$ F_z kN0 \dotsCalibrated partial range F_{xr} , F_y kN0 \dots 0,2 F_z kN0 \dots 0,2 F_z kN0 \dots 0,2Threshold F_{xr} , F_{yr} , F_z mN<1	Operating temperature range		°C	-20 50	
Refractive index of glass top platen $\approx 1,5$ Calibrated range F_x , F_y kN $-2,5 \dots 2$, F_z kN $0 \dots$ Calibrated partial range F_x , F_y kN $0 \dots 0,2$ F_z kN $0 \dots 0,2$ F_z kN $0 \dots 0,2$ Threshold F_{xr}, F_{yr}, F_z mN <1 Sensitivity F_x, F_y pC/N $-7,4$	Weight		kg	45	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Degree of protection	EN 60529:1992		IP65	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Refractive index of glass to	op plate	n ≈1,52		
Calibrated partial range F _{xr} , F _y kN 0 0,2 Fz kN 0 0,1 Threshold F _{xr} , F _{yr} , Fz mN <1	Calibrated range	F _x , F _y	kN	-2,5 2,5	
Fz kN 0 0, Threshold Fxr, Fyr, Fz mN <1		F _z	kN	0 5	
ThresholdFxr, Fyr, FzmN<1SensitivityFxr, FypC/N-7,4	Calibrated partial range	F _x , F _y	kN	0 0,25	
Sensitivity F _x , F _y pC/N -7,4		F _z	kN	0 0,5	
	Threshold	F_x , F_y , F_z	mΝ	<10	
	Sensitivity	F _x , F _y	pC/N	-7,4 ¹⁾	
		Fz	pC/N	-3,8 ¹⁾	

¹⁾ nominal value

Conforms to the **C€** safety standards for electrical equipment and systems: EN 60601-1-1:92 + A1:96, IEC 60601-1-1:92 + A1:95 and the EMC standards: 60601-1-2:01 + A1:06 class B, EN 61000-3-2:06, EN 61000-3-3:95 + A1:01 + A2:05, EN 61000-6-2:05, EN 61000-6-3:01 + A1:04, IEC60601-1-2:01 + A1:04 class B, IEC61000-3-2:05, IEC 61000-3-3:94 + A1:01 + A2:05, IEC61000-6-2:05, IEC 61000-6-3:06

Page 1/3


©2007, Kistler Instrumente AG, PO Box, Eulachstr. 22, CH-8408 Winterthur Tel +41 52 224 11 11, Fax +41 52 224 14 14, info@kistler.com, www.kistler.com

This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.

BioWare[®]

BioWare software is the engine behind the force plate system. It collects data from the force plates, converts the trials into useful information and plots the results. The force plates and charge amplifiers are fully remote controlled by BioWare thus making the system extremely flexible and easy-to-use.

Coefficient of friction (COF)

9285_000-157e-04.07

- 3-dimensional vector representation
- Real-time vectors and COP for biofeedback
- Frequency analysis, statistics, digital filters

3.00 Ê 2.00k 0 1.00 -1.00k 4.00 1.00 2.00 3.00 Time (Absolute Seconds) Jump force Fig. 6: Power - plate #1 4.00

BioWare provides several performance specific evaluations.

Parameters of Countermovement Jump CMJ

Forces - plate #1

4.00

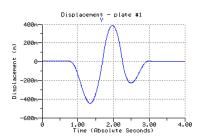
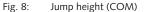
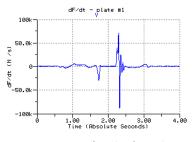
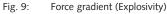






Fig. 7: Power

Other parameters:

- · Acceleration, velocity and displacement of the center of mass (COM)
- Work, energy, impulse
- · Statistics, digital filters

Page 2/3

This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.

©2007, Kistler Instrumente AG, PO Box, Eulachstr. 22, CH-8408 Winterthur Tel +41 52 224 11 11, Fax +41 52 224 14 14, info@kistler.com, www.kistler.com

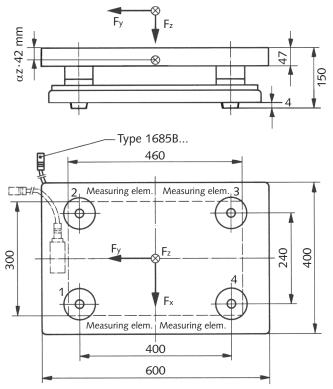


Fig. 10: Dimensions of multicomponent force plate Type 9285

Fig. 11: This photograph taken through the glass plate from below shows the main part of the standing phase of a step.

Typical Measuring Chain

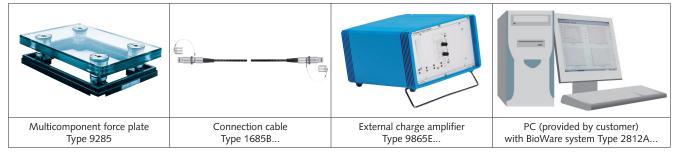


Fig. 12: Configuration of a typical measuring chain

 Included Accessories 1 Set shims 4 Eye bolts M6 with washer 4 Hexagon socket head cap screws M12x25 1 Hexagon socket wrench 	Type/Art. No. 7.050.011 6.170.007 6.220.040 6.120.106 1391	 Ordering Code Multicomponent force plate with charge output 	Туре 9285
 1 Voltage equalizing cable Optional Accessories For Type 9285 External charge amplifier Connection cable, straight plug DAQ system BioWare[®] (PCI-Bus) 	5.590.175 Type/Art. No. 9865E 1685B 2812A		Page 3/3

This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.

©2007, Kistler Instrumente AG, PO Box, Eulachstr. 22, CH-8408 Winterthur Tel +4152 224 11 11, Fax +4152 224 14 14, info@kistler.com, www.kistler.com