

Quattro Jump

Portable Force Plate System

Leg performance is a determinant factor for success in most sports. A mixture of explosive force, endurance and coordination is trained and very carefully optimized for each particular sports type.

Quattro Jump provides an objective measurement of force, power and jump height. A special protocol developed by Prof. Carmelo Bosco allows the quantification of leg performance.

- Objective measurement of jump force, jump height and jump power
- Immediate feedback to optimize the training program
- Rugged and accurate Kistler force plate technology. Portable thanks to lightweight sandwich design

Description

Quattro Jump consists of a portable Kistler force plate on which different jump types are performed. The force plate measures the vertical jump force which is analyzed with the computer connected to the system.

Kistler force plates are a worldwide standard in biomechanics and sports science since 25 years.

Requirements for the PC

- Operating System: Windows 98, NT4.0 (SP4), 2000, XP
- Pentium PC 500 MHz or higher
- Hard disc: 100 MB free space for data storage and software
- Memory: at least 64 MB RAM, (128 recommended)
- Super VGA monitor, screen resolution set to at least 800x600
- Serial interface RS-232C for communication or USB-RS-232C Adapter
- Microsoft compatible mouse
- CD-ROM drive
- · A color printer is recommended for creating hard copies of
- Acrobat Reader for reading the PDF Instruction Manual

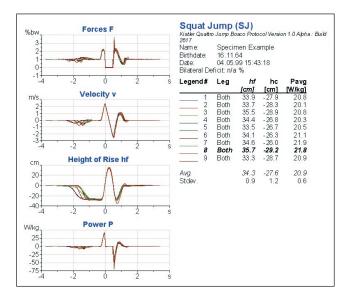
Type 9290AD

Fig. 1: Quattro Jump

Technical Data

Quattro Jump, Type 9290AD

Dimensions of the force plate		mm	920x920x125
Range	Fz	kN	0 10
Overload	Fz	kN	15
Linearity		%FSO	<±0,5
Hysteresis		%FSO	<1
Natural Frequency		Hz	≈150
Operating temperature range		° C	0 50
Weight		kg	21,6
Sampling rate		Hz	500
Resolution			
Range 1		N/bit	1
Range 2		N/bit	0,2
Interface to the computer			RS-232C
Connector type			D-Sub 9f
Baudrate		kBaud	19,2 115
Power supply			
Battery			12x1,5 V
External power supply			12 V
Connector type jack-socket			D5,5/2,1
Battery Lifetime (Alkaline)			≈15 hours



measure. analyze. innovate.

Quattro Jump Software

The Quattro Jump Software is dedicated for routine jump performance measurement. It is therefore very easy to use. After every jump the protocol on the right side of the screen is updated. The best jump is highlighted.

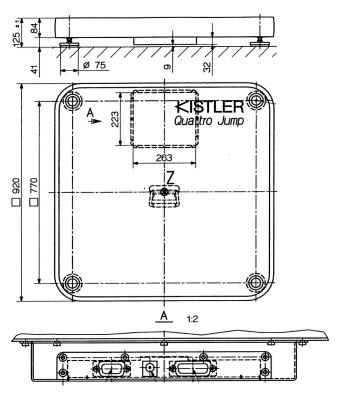
The control area on the left side of the screen allows the user to delete or temporarily hide jumps from the protocol.

Bosco Test

The Bosco Protocol evaluates different types of «Squat Jump», «Countermovement Jump» and «Continuous Jump»:

Des.	Type of jump	No.	Description
SJ	Squat Jump	3 *	Single jump starting from
			knees bent at 90 degrees
SJbw	Squat Jump +	3 *	Squat jump with additio-
	Body Weight		nal load of up to one
			body weight
CMJ	Counter-	3 *	Single jump starting with
	movement		straight legs with a natu-
	Jump		ral flexion before takeoff
CJbref	Continuous	5*	Series of jumps with bent
	Jump Bent		knees, used as reference
	Legs Ref.		to compare with CJb
			(15 60 s)
CJs	Cont. Jump	5*	Series of jumps with
	straight leg		straight knees
CJb	Cont. Jump	15	Series of 15 60 s
	Bent Legs	60 s	jumping with bent knees

* Recommended No. of jumps

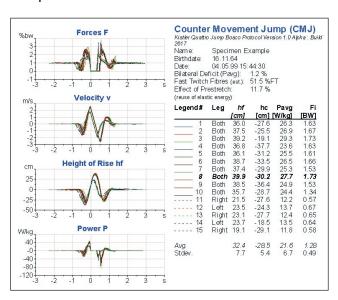

Important Parameters

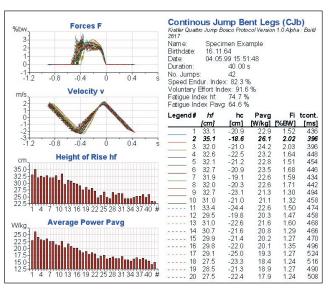
Force time curve	F(t)
Jump height (rise of center of gravity)	hf
Depth of countermovement	
Average Power	Pavg
% Fast Twitch Fibers (estimate)	%FT
Force at the transition from eccentric to concentric	Fi
Bosco Index	

Leg Equilibrium Index
Speed/Endurance Index
Effect of Prestretch
Fatigue Parameters

approximately 70 further Parameters

Dimension




measure, analyze, innovate,

Jump Type Specific Bosco Protocols

For each jump type a variety of parameters is calculated and presented in a jump type specific protocol. This protocol can be customized by the user.

Examples:

Summary Protocol

A summary protocol (also customizable) combines the most important parameters of an entire test. It also allows the comparison of different tests for instance within a team or over a certain time.

Squa #	t Jumps (SJ and SJb Name	w) Date	hf SJ [cm]	hf SJbw [cm]	Bosco Ind.			
1	Example, Specimen	04.05.99	↑ 35.7	24.3	68.1			
Avg. Stdev.			35.7 0.0	24.3 0.0	68.1 0.0			
Coun	termovement Jump (C <i>MU)</i> Date	hf (cm)	Fi I%BWI	Pavg (Wkg)	Effect of Prestretch	Fast Twitch Fibres [%FT]	
1	Example, Specimen	04.05.99	39.9	1.73	-	11.7	51.5	
Avg. Stdev.			39.9 0.0	1.73 0.00	27.7 0.0	11.7 0.0	51.5 0.0	
Cont	inuous Jump (CJs an	d CJbref)		CJs		1	CJbref	
#	Name	Date	hf [cm]	Pavg [Wkg]	k [kN/m]	hf [cm]	Pavg [Wkg]	Leg Equ. Index
1	Example, Specimen	04.05.99	29.7	34.5	29.75	38.9	24.2	1.4
Avg. Stdev.			29.7 0.0	34.5 0.0	29.75 0.00	38.9 0.0	24.2 0.0	1.4 0.0
Cont	inuous Jump (CJb)			CJI	b Overview		CJb 0	15s
#	Name	Date	Speed Endur. Ind. [%]	Voluntary Effort Index [%]	Fatigue Index hf[%]	Fatigue Index Pavg [%]	hf [cm]	Pavg [Wkg]
1	Example, Specimen	04.05.99	82.3	91.6	74.7	64.6	32.0	22.4

Included Accessories	Type/Art. No.
Battery (12x)	5.310.002
 Quattro Jump Software 	2822A-01-0
RS-232C Interface cable	1200A27
• Power supply 90 260 VAC/12 VDC	5.510.293

Optional Accessories

none

Ordering Code Type • Quattro Jump 9290AD Portable force plate system