

Multicomponent Force Plate

Type 9281E...

for Dynamic Applications in Biomechanics, Fz -10 ... 20 kN

Multicomponent force plate with wide range for measuring ground reaction forces, moments and the center of pressure in biomechanics.

- Extremely wide measuring range
- Excellent measuring accuracy
- High natural frequency
- Versatile
- Threshold F_z <250 mN

Description

The multicomponent force plate Type 9281E... consists of a 600x400 mm aluminum sandwich top plate of advanced, lightweight construction and four built-in piezoelectric 3-component force sensors. Thus it is extremely rigid overall, and allows measurements over a very wide useful frequency range.

Thanks to the special properties of the piezoelectric sensors, the plate is highly sensitive and can simultaneously measure very dynamic phenomena involved in a wide range of applications.

Application

This force plate is designed specifically for use in basic research and sport. Its extensive range and high rigidity allow it to be employed across a very wide spectrum of measuring tasks and application sectors. Despite the very generous measuring range of $-10 \dots 20$ kN, it offers excellent accuracy and linearity, and even under a large preload allows precise measurement of minute forces. In all these situations the plate can be mounted in any position without affecting the measurement result in any way.

The Type 9281EA has an built-in charge amplifier compatible with all of the common motion analysis systems.

Technical Data

Dimensions		mm	600x400x100
Measuring range	F _x , F _y	kN	-10 10
Wicasaming range	F ₇	kN	-10 20
O			
Overload	F_x , F_y	kN	-15/15
	F _z	kN	-10/25
Linearity	%FSO		<±0,2
Hysteresis	%FSO		<0,3
Crosstalk	F _x <-> F _y	%	<±1,5
	F_x , $F_y \rightarrow F_z$	%	<±1,5
	$F_z \rightarrow F_x$, F_y	%	<±0,5 ¹⁾
Rigidity	x -axis ($a_y = 0$)	N/µm	≈250
	y-axis $(a_x = 0)$	N/µm	≈400
	z-axis		
	$(a_x = a_y = 0)$	N/µm	≈30
Natural frequency	f _n (x, y)	Hz	≈1 000
	f _n (z)	Hz	≈1 000
Operating temperature	range	°C	0 60
Weight		kg	16
Degree of protection	EN 60529:1992		IP65
1)			

¹⁾ inside sensor rectangle

measure. analyze. innovate.

Force Plate with Built-in 8-Channel Charge Amplifier, Type 9281EA			
Calibrated range	F _x , F _y	kN	0 5
	F_z	kN	0 20
Calibrated partial range	F _x , F _y	kN	0 1,25
	F_z	kN	0 5
Sensitivity range 1	F _x , F _y	mV/N	≈40 ²⁾
	F_z	mV/N	≈18 ²⁾
Sensitivity range 4	F _x , F _y	mV/N	≈2,0 ²⁾
	F_z	mV/N	≈0,9 ²⁾
Ratio ranges 1:2:3:4			1:5:10:20 ³⁾
Threshold		mN	<250 ⁴⁾
Drift		mN/s	<±10
Supply voltage		VDC	10 30
Supply current		mA	≈45
Output voltage		V	0 ±5
Output current		mA	-2 2
Control inputs (optocoupler)	V	5 45

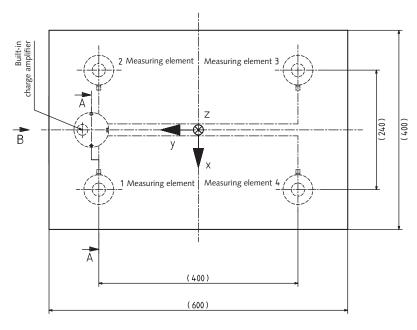
Force Plate without Charge Amplifier, Type 9281E

Calibrated range	F _x , F _y	kN	0 10
	F_z	kN	0 20
Calibrated partial range	F _x , F _y	kN	0 1
	F_z	kN	0 2
Threshold	F _x , F _y , F _z	mN	<50
Sensitivity	F _x , F _y	pC/N	-7,5 ²⁾
	F_z	pC/N	-3,8 ²⁾

²⁾ nominal value

0,4 ... 4,4

mΑ


Conforms to the CE safety standards (73/23/EG) for electrical equipment and systems:

EN 60601-1:2005, EN 61010-1:2001

and the EMC standards (89/336/EG):

EN 60601-1:2005 (EN 55022 Class B), EN 61000-6-3:2004 (EN 55022 Class B), EN 61000-6-4:2001 (EN 55011 Class B), EN 60601-1:2005, EN 61000-6-1:2001, EN 61000-6-2:2005

Dimensions

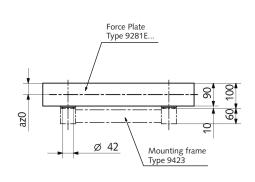


Fig. 1: Dimensions of multicomponent force plate Type 9281E...

^{3) ±0,5 %} accuracy

only range 1

BioWare®

BioWare software is the engine behind the force plate system. It collects data from the force plates, converts the trials into useful information and plots the results. The force plates and charge amplifiers are fully remote controlled by BioWare thus making the system extremely flexible and easy-to-use.

Parameters of Gait

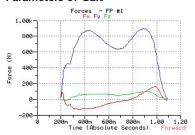


Fig. 2: Ground reaction forces (GRF)

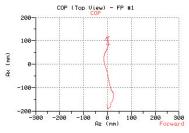


Fig. 3: Center of pressure (COP)

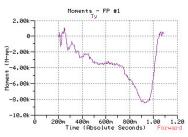


Fig. 4: Frictional torque Tz

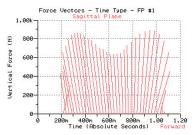


Fig. 5: Force vector

Other functions

- Coefficient of friction (COF)
- Frequency analysis, statistics, digital filters
- Full Windows® functionality

Windows® is a registered trade mark of Microsoft Corporation.

BioWare provides several performance specific evaluations.

Parameters of Countermovement Jump CMJ

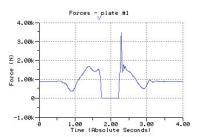


Fig. 6: Jump force

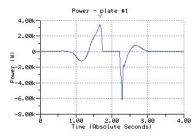


Fig. 7: Power

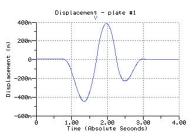


Fig. 8: Jump height (COM)

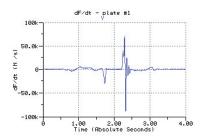


Fig. 9: Force gradient (Explosivity)

Other parameters

- Acceleration, velocity and displacement of the center of mass (COM)
- Work, energy, impulse
- · Statistics, digital filters

Page 3/4

Typical Measuring Chains

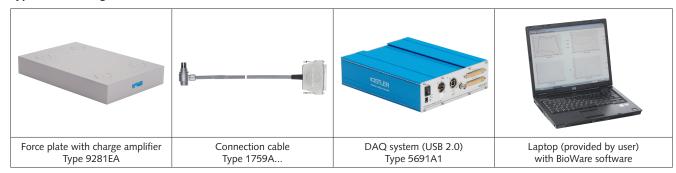


Fig. 10: Configuration of a typical measuring chain with Kistler DAQ system BioWare®

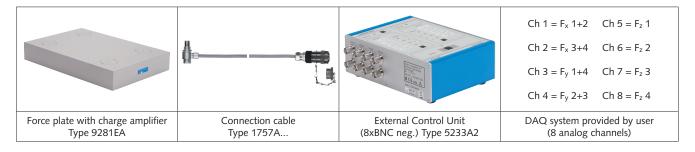


Fig. 11: Configuration of a typical measuring chain with DAQ system provided by user

Included Accessories	Type/Art. No.	Ordering Key	
for Type 9281E			Type 9281E 🗔
• 1 Set shims	7.050.011	Multicomponent Force Plate	↑
• 4 Eye bolts M6	6.170.007	with charge output	_
with washer	6.220.040	with built-in charge amplifier	Α
 4 Hexagon socket head cap screws M12x25 	6.120.106		
1 Hexagon socket wrench1 Voltage equalizing cable	1391 5.590.175	BioWare [®] is a registered trade mark of Kistler Ho	olding AG.

Optional Accessories Type/Art. No. for Type 9281EA with built-in charge amplifier

•	Connection cable, angle plug connector	1759A
•	DAQ system for BioWare (USB 2.0)	5691A1
•	External control unit (BNC out)	5233A2
•	Connection cable for Type 5233A	1757A
•	DAQ system BioWare (PCI-Bus)	2812A

For Type 9281E with charge output

	71 0 1	
•	External charge amplifier	9865E
•	Connection cable, angle plug connector	1686A
•	DAQ system BioWare (PCI-Bus)	2812A

Mounting frame for Type 9281E...

Standard mounting frame	9423
Other mounting frames for multiple	on request
installations	

Page 4/4