

Force Sensors

Transparent Manufacturing Processes Ensure Quality and Reduce Costs.

Kistler – Your Partner for Process Efficiency and Cost Effectiveness

The Kistler Group is one of the world's leading manufacturers of sensors and systems to measure pressure, force, torque and acceleration. Kistler systems are used to analyze and evaluate measuring signals. The results of these evaluations help to improve process efficiency, ensuring a sustainable increase in companies' overall success.

Content.

Focus on Quality and Cost-Effectiveness	4
Product Overview: Force Sensors	6
1-Component Force Sensors	7
Multi-component Force Sensors	26
Strain Sensors	34
Strain Gage Sensors	38
Basics of Measurement Technology	
Piezoelectric Measurement Technology	42
Measuring Methods	44
Strain Gage Measurement Technology	45
Measuring Chains	46
Calibration	48
Service: Customized Solutions from A to Z	50
Kistler – At Our Customers' Service Across the Globe	51

Assembly processes and product testing are just two of the many industrial activities where sensors from Kistler are used

Focus on Quality and Cost-Effectiveness.

Quality and precision standards in industrial manufacturing are continually increasing while competition is becoming even more fierce, thereby making it essential to optimize and monitor the entire production chain. Kistler's measurement and system technology can help meet these requirements, laying the foundations for zero-defect industrial production.

Ensuring the quality of the end product is always the top priority in the automotive industry and the medical technology or electrical engineering sectors (to mention only a few examples); and this is why strict standards are specified for this purpose. Especially if many individual components are assembled to form one single product, each component must already have been tested by the suppliers: this is the only way to guarantee the quality of the end product. In many such cases, the only solution is to integrate monitoring systems into the production process.

- Force measurement is integrated in the production process
- Process monitoring ensures zero-defect production
- Quality costs are cut because deviations are detected at an early stage
- Process efficiency is optimized due to the flexibility of the measuring equipment

Optimized Process Efficiency Thanks to Technology from Kistler

The objective: to implement zero-defect industrial production at the lowest possible cost. Kistler's response: integrated process monitoring, which means direct verification during each process step. This concept is underpinned by sensor technology based on the piezoelectric principle – an approach that is outstandingly suitable for monitoring and optimizing production processes.

Lower Quality Assurance Costs for Plant Operators

Process-integrated monitoring cuts the costs of quality assurance. This cost-effective solution protects plant operators against the possibility of faulty parts reaching the customer; it also ensures that there is no disruption to any downstream assembly operations.

Increased Process Efficiency with Kistler – Now Online!

View our animation to experience convincing, first-class Kistler solutions – the sure way to optimize process efficiency:

www.kistler.com/maxymos

Product Overview: Force Sensors

Piezoelectric Sensors

Direct Force Meas	urement	Meası Type	ırement	Preloaded	Ready for Measurement	N	,10000	,1000	,000	,00	٥	,00	,000	70	,00	,0000	0000	Pages
USILER WITH STAN CHILD	Force Sensor	Fz	*														•	8–9
	Force Link	Fz	‡	•	•						_	-		_				10–11
Guo	Press Force	Fz	‡	•	•						-	_		<u> </u>		_		12–13
	SlimLine	Fz	‡								-	+	+	ļ				14–17
120	SlimLine Force Link	Fz	‡	•	•							-		<u> </u>				18–19
	SlimLine Shear Force	Fy	S					-				+		•				20–21
	Low Force	Fz	‡	•	•				-	_		+	•					22–23
- Junio	Miniature Sensor	Fz	‡		•						-							24–25
SISTLER 12 CONTROL OF SISTERS 12 CONTROL OF	3-Component Force Sensor	Fx, Fy, Fz	大			-					H	+	+	+		-		28–29
	3-Component Force Link	Fx, Fy, Fz	人	•	•	-							+	_		-		30–31
The state of the s	Dynamometers	Fx, Fy, Fz, Mz	2	•	•										-			32–33
Indirect Force Meası	urement	Measu Type	rement	Preloaded	Ready for Measurement	μ	,100,00	,,000,	100	,00	Q	, ₀ 0	1000	,00	90	2000	30000	Pages
	Surface Strain Sensor	μ	↔		•													35
<u>M</u> 1 m) → 1-r.	Strain Measuring Pin	μ	‡		•													36–37

Strain Gage Sensors

Direct Force Measi	urement	Meas Type	urement Preloaded	Ready for Measurement	N ,	,10000	,000	,000	,100	, 0	00	,000	,000,	0000	30000	Pages
	Strain Gage Force Sensors	Fz	‡	•				-			٠					38–41

1-Component Force Sensors.

The force sensors in our portfolio utilize the outstanding properties of piezo crystals and quartzes, providing the basis for our sensor technology.

The load washer is the standard piezoelectric measuring element. The sensor elements themselves are only slightly preloaded. They are typically integrated into the existing structure at the measuring point, where they are installed with the required preload. This preload corresponds to a load offset.

Our force links and press force sensors can be used directly by customers for immediate measurements. These preloaded quartz force links are calibrated in the factory, and are suitable for measuring compression and tensile forces.

Our low level force sensors are designed for extremely small forces. Thanks to their internal structure, these sensors are up to 30 times more sensitive so that even the smallest forces can be measured reliably.

Benefits

- Extremely rigid, so that high natural frequencies can be attained
- · High loading capacity
- Durable
- Compact design
- Broad measuring range
- Direct measurements in the force flux
- Measurements without deflection are possible
- · Extensive range

1-Component Force Sensors

Technical Data	Туре	9001A	9011A	9021A	9031A

Measuring range	Fz 1)	kN	0 7,5	0 15	0 35	0 60
Calibrated meas. ranges	Fz	kN	0 62)	0 12 2)	0 282)	0 482)
	Fz	kN	0 0,62)	0 1,2 2)	0 2,82)	0 4,82)
Sensitivity	Fz 1)	pC/N	≈-4,0	≈ -4,3	≈-4,3	≈ -4,3
Dimensions	D	mm	10,3	14,5	22,5	28,5
	d	mm	4,1	6,5	10,5	13
	Н	mm	6,5	8	10	11
Rigidity	C _{A,z}	kN/μm	≈1,1	≈1,6	≈3,4	≈5,4
Weight		g	3	7	20	36
Operating temp. range ³⁾		°C	-196 200	-196 200	-196 200	-196 200
Connector			KIAG 10-32 neg.	KIAG 10-32 neg.	KIAG 10-32 neg.	KIAG 10-32 neg.
Deg. of protection to IEC/EN	60529					
screwed with cable (e.g. 1631	1C)	IP65	•	•	•	•
welded with cable (e.g. 1983)	AD)	IP67	•	•	•	•

Accessories					
Preloading screw ⁴⁾ Thread × pitch/	Туре	9422A01	9422A11	9422A21	9422A31
length Preloading force	Fv (kN)	M3×0,5/19,5 2,5	M5×0,8/26 5	M8×1,25/39 10	M10×1,5/46 20
Preloading element Thread × pitch/	Туре	9420A01	9420A11	9420A21	9420A31
length Preloading force	Fv (kN)	M3×0,5/22 4	M5×0,5/28 7	M8×1/40 18	M10×1/46 30
Insulating washer Dimensions	Type D (mm) S (mm)		9517 14 0,125	9527 22 0,125	9537 28 0,125
Force distributing cap Dimensions	Type D (mm) H (mm)	9509 10 10	9519 14 15	9529 22 20	9539 28 25
Force distributing ring Dimensions	Type D (mm) H (mm)	9505 10 6	9515 14 8	9525 22 10	9535 28 11
Spherical washer Dimensions \$\Pi\text{D}\$	Type D (mm) H (mm)		9513 12 4	9523 21 6	9533 24 7

¹⁾ without preloading
2) with a preload of 20 % of the measuring range
3) operating temperature range depends on the cable used
4) included in delivery

9041A		9051A	9061A	9071A	9081B	9091B
STIER	(a)	SSILER SS 14 SS 244	STLER (A)	COTLER ATRIALIZE		The state of the s
0 90		0 120	0 200	0 400	0 650	0 1200
0 72 ²⁾		0 96 ²⁾	0 160 ²⁾ 0 16 ²⁾	0 320 ²⁾ 0 32 ²⁾	0 650	0 1200
0 7,2 2)		0 9,6 ²⁾	0 16-7	0 32-7	0 65	0 120

0 72 2)	0 962)	0 160 ²⁾	0 3202)	0 650	0 1200
0 7,2 2)	0 9,62)	0 16 ²⁾	0 32 2)	0 65	0 120
≈ -4,3	≈–4,3	≈ -4, 3	≈ -4,3	≈-2,2	≈-2,2
34,5	40,5	52,5	75,5	100	145
17	21	26,5	40,5	40,5	72
12	13	15	17	22	28
≈6,9	≈9,8	≈15	≈29	30	65
70	80	157	370	910	2180
–196 200	–196 200	–196 200	-196 200	-40 200	-40 200
KIAG 10-32 neg.	KIAG 10-32 neg.	KIAG 10-32 neg.	KIAG 10-32 neg.	KIAG 10-32 neg.	KIAG 10-32 neg.
•	•	•	•	•	•
•	•	•	•	•	•
	-	-			
9422A41	9422A51				
M12×1,75/53 30	M14×2/60 40				

9422A41	9422A51				
M12×1,75/53 30	M14×2/60 40				
9420A41	9420A51	9420A61	9420A71	9455	9456
M12×1/60 45	M14×1,5/62 60	M20×1,5/80 100	M27×2/102 200	M40×2 450	M64×3 600 (hydraulic)
9547	9557	9567	9577		
34	40	52	75		
0,125	0,125	0,125	0,125		
9549	9559	9569	9579		
34	40	52	75		
30	40	50	60		
9545	9555	9565	9575		
34	40	52	75		
12	13	15	17		
9543	9553	9563	9573		
30	36	52	75		
8	10	14	20		

1-Component Quartz Force Links redundant

Technical Data		Туре	9301B	9311B	9321B
	D G Fz H			The state of the s	
Measuring range	Fz	kN	-2,5 2,5	<i>-</i> 5 5	-10 10
Calibrated meas. ranges	Fz Fz Fz	kN kN kN	0 2,5 02,5 0 0,025	0 5 05 0 0,05	0 10 0 –10 0 0,1
Sensitivity	Fz	pC/N	≈-3,2	≈-4	≈-4
Dimensions	D H G	mm mm	11 25 M5	15 30 M6	23 45 M10
Rigidity	C _{A,z}	kN/μm	≈0,44	≈0,73	≈1,1
Natural frequency	$f_n(z)$	kHz	≈90	≈70	≈55
Weight		g	14	28	90
Operating temp. range 1)		°C	-40 120	-40 120	-40 120
Connector			KIAG 10-32 neg.	KIAG 10-32 neg.	KIAG 10-32 neg.
Deg. of protection to IEC/EN screwed with cable (e.g. 163 welded with cable (e.g. 1983)	31C)	IP65 IP67	•	•	•
With basic insulation			•	•	•
Preloaded			•	•	•
Ready for measurement			•	•	•
Datasheet: see www.kistler.	com		9301B (000-107)	9301B (000-107)	9301B (000-107)
Accessories					
Force distributing cap Dimensions	D	Type D (mm) H (mm)	9500A0 8,5 4	9500A1 12,5 6	9500A2 18 9
Flange Dimensions	Ď.	Type D (mm) H (mm)	9501A0 25 8	9501A1 34 9	9501A2 44 16

Note:

These sensors are also available as reference sensors with excellent linearity (up to $\pm \le 0.1\%$ FSO) and SCS calibration, with type designation 93×1BK. They are especially well-suited for calibrations (e.g. as factory reference sensors).

¹⁾ operating temperature range depends on the cable used

9331B 9341B 9351B 9361B 9371B

-20 20	-30 30	-40 40	-60 60	-120 120
0 20	0 30	0 40	0 60	0 120
0 –20	0 –30	0 –40	0 –60	0 –120
0 0,2	0 0,3	0 0,4	0 0,6	0 1,2
≈-4	≈-4	≈ - 4	≈-4	≈-4
29	35	41	53	76
52	62	72	88	108
M12	M16	M20	M24	M30
≈1,6	≈2,1	≈ 2,4	≈3,1	≈ 6,1
≈45	≈40	≈33	≈28	≈22
170	330	480	1020	2500
–40 120	-40 120	-40 120	-40 120	-40 120
KIAG 10-32 neg.				
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
9301B (000-107)				
9500A3	9500A4	9500A5	9500A6	9500A7
23	31	35	45	64

9500A3	9500A4	9500A5	9500A6	9500A7
23	31	35	45	64
12	15	18	22	32
9501A3	9501A4	9501A5	9501A6	9501A7
9501A3 56	9501A4 70	9501A5 84	9501A6 102	9501A7 136
56	70	84	102	136
56	70	84	102	136

1-Component Quartz Force Links, Press Force

Technical Data		Туре	9313AA1	9313AA2	9323AA	9323A
Teermear Batta	D K Fz			33.0.0.2		The state of the s
Measuring range	Fz	kN	0 5	0 20	0 10	0 20
Permissible tensile force	Fz	kN	00,5	02	01	02
Calibrated meas. ranges	Fz Fz Fz	kN kN kN	0 0,05 0 0,5 0 5	0 0,2 0 2 0 20	0 0,1 0 1 0	0 0,2 0 2 0 20
Sensitivity	Fz	pC/N	≈-10	≈-10	≈–9,6	≈-3,9
Output signal		V				
Dimensions	D K H	mm mm mm	13 M2,5 10	19 M4 14	20 M5×0,5 26	20 M5×0,5 26
Rigidity	C _{A,z}	kN/μm	≈0,56	≈1,50	≈1,30	≈1,20
Natural frequency	f _n (z)	kHz	>38	>35	>74,5	>72
Weight		g	10	25	50	47
Operating temp. range 1)		°C	-40 120	-40 120	-40 120	-40 120
Connector			KIAG 10-32 neg.	KIAG 10-32 neg.	KIAG 10-32 neg	KIAG 10-32 neg
Deg. of protection to IEC/E screwed with cable (e.g. 16 welded with cable (e.g. 198 screwed with cable (e.g. 17 Preloaded	531C) 83AD)	IP65 IP67 IP67	•	:	:	:
Ready for measurement			•	•	•	•
Datasheet: see www.kistle	r com		9313 (000-705)	9313 (000-705)	9323 (000-704)	9323 (000-704)
Accessories						
Flange Dimensions		Type D (mm) H (mm)	9580A7 27 7	9580A8 35 8	9580A9 40 8	9580A9 40 8
Force distributing cap Dimensions	D	Type D (mm) H (mm)	9500A00 6 3	9500A01 10,5 5	9582A9 20 8,5	9582A9 20 8,5
Spigot Dimensions		Type D (mm) L (mm)	9590A7 5 12,5	9590A8 10 20,5		
Female Thread Adapter Dimensions	D	Type D (mm) H (mm)			9584A9 20 8	9584A9 20 8
Male Thread Adapter Dimensions	D d	Type D (mm) H (mm)			9586A9 20 8	9586A9 20 8

¹⁾ operating temperature range depends on the cable used $% \left(1\right) =\left(1\right) \left(1\right) \left($

9333A	9343A	9363A	9383A	9393A	9337A40
			States Control of the		
0 50	0 70	0 120	0 300	0 700	0 70
05	0 –10	0 –20	050	0 –120	
0 0,5 0 5 0 50	0 0,7 0 7 0 70	0 1,2 0 12 0 120	0 3 0 30 0 300	0 7 0 70 0 700	0 5 0 50
≈-3,9	≈-3,9	≈-3,8	≈-1,9	≈-1,9	
					0 10
30 M9×0,5 34	36 M13×1 42	54 M20×1,5 60	100 S28×2 130	145 31 190	50 45
≈2,30	≈2,60	≈ 4,40	≈7,90	≈10,0	≈2,34
>55	>47	>35	>17	>11,3	>32
137	240	800	6490	18 663	520
-40 120	-40 120	-40 120	-40 120	-40 120	-10 70
KIAG 10-32 neg	KIAG 10-32 neg	KIAG 10-32 neg	KIAG 10-32 neg	KIAG 10-32 neg	M12×1 8-pole, shielded
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
9323 (000-704)	9323 (000-704)	9323 (000-704)	9323 (000-704)	9323 (000-704)	9337A (000-664)
9580A0 62 11	9580A1 70 13	9580A2 100 22	9580A4 180 30	9580A6 220 48	9594A1 80 13
9582A0 30 11	9582A1 36,5 13	9582A2 56 22	9582A4 100 50	9582A6 145 80	9582A1 36,5 13
9584A0 30 11	9584A1 36,5 14	9584A2 56 21	9584A4 100 30	9584A6 150 48	9584A1 36,5 14
9586A0 30 11	9586A1 36,5 14	9586A2 56 21	9586A4 100 30	9586A6 150 48	9586A1 36,5 14

1-Component Force Sensors

Technical Data	Type	91014	91024
lechnical Data	Type	JIUIA	3102A

Measuring range	Fz ¹⁾	kN	0 20	0 50
Calibrated meas. ranges	not calibrate	ed		
Sensitivity	Fz 1)	pC/N	≈-4,3	≈-4,3
Dimensions	D d H	mm mm mm	14,5 6,5 8	22,5 10,5 10
Rigidity	C _{A,z}	kN/μm	≈1,6	≈3,4
Weight		g	7	20
Operating temp. range 2)		°C	-40 120	-40 120
Connector			KIAG 10-32 neg.	KIAG 10-32 neg.
Deg. of protection to IEC/EN 60529 screwed with cable (e.g. 1631C) welded with cable (e.g. 1983AD)		IP65 IP67	•	:
Datasheet: see www.kistler.com			9101A (000-108)	9101A (000-108)

Accessories				
Preloading screw	A (B)	Туре	9422A11	9422A21
Thread × pitch/length			M5×0,8/26	M8×1,25/39
Preloading force		Fv (kN)	5	10
Preloading element		Туре	9420A11	9420A21
Thread × pitch/length	4	,,	M5×0,5/28	M8×1/40
Preloading force		Fv (kN)	7	18
Insulating washer	ı D .	Туре	9517	9527
Dimensions		D (mm)	14	22
	s s	S (mm)	0,125	0,125
Force distributing cap	L D J	Туре	9519	9529
Dimensions		D (mm)	14	22
	H	H (mm)	15	20
Force distributing ring	1. D .1	Туре	9515	9525
Dimensions		D (mm)	14	22
	HŢ	H (mm)	8	10
Spherical washer	_	Туре	9513	9523
Dimensions		D (mm)	12	21
	\$ H	H (mm)	4	6
		(total)		

¹⁾ without preloading 2) operating temperature range depends on the cable used

1-Component Force Sensors, SlimLine

Technical Data		Туре	9130B	9131B	9132B
	D d d FZ			No.	12/501
Measuring range	Fz ¹⁾	kN	0 3	0 2,5	0 7
Calibrated meas. ranges	not calibrated				
Sensitivity	Fz 1)	pC/N	≈-3,5	≈-4	≈-3,8
Dimensions	D d H	mm mm mm	8 2,7 3	7 - 3	12 4,1 3
Rigidity	C _{A,z}	kN/μm	≈1	≈0,9	≈2,1
Weight (without cable)		g	1	1	2
Operating temperature range	ge	°C	–20 120	-20 120	-20 120
Connector (with integrated cable)			optional: KIAG 10–32 pos. int. or Mini-Coax neg.	optional: KIAG 10–32 pos. int. or Mini-Coax neg.	optional: KIAG 10–32 pos. int. or Mini-Coax neg.
Deg. of protection to IEC/E	N 60529	IP65	•	•	•
Datasheet: see www.kistler.	com		9130B (000-110)	9130B (000-110)	9130B (000-110)
Accessories					
Preloading disk Dimensions	H\$	Type G L (mm) D (mm) H (mm)	9410A0 M2 8 8 3,5		9410A2 M2,5 8 12 3,5

¹⁾ without preloading

1-Component Force Sensor Assembly Kits Comprising 2, 3 or 4 Sensors

Technical Data	Туре	9130BA	9132BA

Assembly kit comprises	Туре	9130B	9132B
Connector (sensors are connected undetachably to the flange bushing)		Fischer flange 7-pole, neg.	Fischer flange 7-pole, neg.
Deg. of protection to IEC/EN 60529 with connected cable (e.g. 1971A)	IP65	•	•
Datasheet: see www.kistler.com		9130BA (000-694)	9130BA (000-694)

9133B... 9134B...

9135B...

9136B...

9137B...

0 14	0 26	0 36	0 62	0 80
≈-3,8	≈-3,8	≈-3,8	≈-3,8	≈-3,8
16	20	24	30	36
6,1	8,1	10,1	12,1	14,1
3,5	3,5	3,5	4	5
≈3	≈6,3	≈7,8	≈ 12 ,8	≈ 18,8
3	5	7	14	27
-20 120	-20 120	-20 120	-20 120	–20 120
optional:	optional:	optional:	optional:	optional:
KIAG 10–32 pos. int. or	KIAG 10-32 pos. int. or	KIAG 10–32 pos. int. or	KIAG 10-32 pos. int. or	KIAG 10-32 pos. int. or
Mini-Coax neg.				
•	•	•	•	•
9130B (000-110)				

9410A3	9410A4	9410A5	9410A6	9410A7
M3	M4	M5	M6	M8
10	10	10	14	16
16	20	24	30	36
4,25	4,25	4,25	5,5	7

9133BA	9134BA	9135BA	9136BA	9137BA

9133B	9134B	9135B	9136B	9137B
Fischer flange 7-pole, neg.				
•	•	•	•	•
9130BA (000-694)				

1-Component Quartz Force Links, SlimLine Force Link

Technical Data		Туре	9173B	9174B
H H	Fz G D			
Measuring range	Fz	kN	−3 12	-5 20
Calibrated meas. range	Fz	kN	0 12	0 20
Sensitivity	Fz	pC/N	≈-3,5	≈–3,5
Dimensions	D H h G	mm mm mm	18 22 14 M12×1,25	22 24 16 M16×1,5
Rigidity	C _{A,z}	kN/µm	≈0,7	≈1,2
Natural frequency	$f_n(z)$	kHz	≈74	≈66
Weight (without cable)		g	28	40
Operating temperature ra	ange	°C	-20 80	-20 80
Connector 1) (with integrated cable)			KIAG 10-32 neg.	KIAG 10–32 neg.
Deg. of protection to IEC	/EN 60529	IP65	•	•
With basic insulation			•	•
Preloaded			•	•
Ready for measurement			•	•
Datasheet: see www.kistler.com			9173B (000-112)	9173B (000-112)
Accessories				
Force distributing cap		Туре	9416A3	9416A4
Dimensions		D (mm) H (mm)	14 6	18 8

 $^{^{\}mbox{\tiny 1)}}$ plug coupling Type 1729A2 (included in delivery scope) fitted

9175B 9176B

9177B

-8 30	-16 60	-20 75
0 30	0 60	0 75
≈-3,5	≈-3,5	≈-3,5
26	32	38
28	34	38
19	23	28
M20×1,5	M24×2	M30×2
≈1,6	≈ 2 ,4	≈3,4
≈57	≈ 47	≈40
81	147	227
-20 80	-20 80	-20 80
KIAG 10-32 neg.	KIAG 10-32 neg.	KIAG 10-32 neg.
•	•	•
•	•	•
•	•	•
•	•	•
9173B (000-112)	9173B (000-112)	9173B (000-112)

9416A5	9416A6	9416A7
22	28	34
9	9	9,8

1-Component Force Sensors, SlimLine for Shear Force

Technical Data Type 9143B... 9144B...

Measuring range	Fy	kN	-0,9 0,9	-1,7 1,7
Calibrated meas. ranges	not calibra	ted		
Sensitivity	Fy	pC/N	≈-6,5	≈-7,5
Dimensions	D d H	mm mm mm	16 6,1 3,5	20 8,1 3,5
Rigidity (Z-axis)	C _{A,z}	kN/µm	≈3	≈6,3
Rigidity (Y-axis)	C _{S,y}	kN/µm	≈1,2	≈ 2,4
Weight (without cable)		g	3	5
Operating temperature ra	nge	°C	–20 120	–20 120
Connector (with integrated cable)			optional: KIAG 10–32 pos. int. or Mini-Coax neg.	optional: KIAG 10–32 pos. int. or Mini-Coax neg.
Deg. of protection to IEC	'EN 60529	IP65	•	•
Datasheet: see www.kistler.com			9143B (000-113)	9143B (000-113)

Accessories			
Preloading disk	Туре	9410A3	9410A4
Dimensions L D	G	M3	M4
<u> </u>	L (mm)	10	10
→ 	D (mm)	16	20
Tightening torque	H (mm)	4,25	4,25
	M (N·m)	10	23

1-Component Force Sensor Assembly Kits for Shear Force Comprising 2, 3 or 4 Sensors

Technical Data Type 9143BA... 9144BA...

Assembly kit comprises	Туре	9143B	9144B
Connector (nondetachable sensors are connected to the flange bushing)		Fischer flange 7-pole, neg.	Fischer flange 7-pole, neg.
Deg. of protection to IEC/EN 60529 with connected cable (e.g. 1971A)	IP65	•	•
Datasheet: see www.kistler.com		9143BA (000-766)	9143BA (000-766)

9145B...

9146B...

9147B...

-2,7 2,7	-4 4	-8 8
≈-7,5	≈-7,5	≈-8,1
24	30	36
10,1	12,1	14,1
3,5	4	5
≈7,8	≈ 12,8	≈18,8
≈3,1	≈5,1	≈7,1
7	14	27
–20 120	-20 120	–20 120
optional:	optional:	optional:
KIAG 10–32 pos. int. or	KIAG 10–32 pos. int. or	KIAG 10–32 pos. int. or
Mini-Coax neg.	Mini-Coax neg.	Mini-Coax neg.
•	•	•
9143B (000-113)	9143B (000-113)	9143B (000-113)

9410A5	9410A6	9410A7
M5	M6	M8
10	14	16
24	30	36
4,25 46	5,5	7
46	79	135

9145BA	9146BA	9147BA

9145B	9146B	9147B
Fischer flange	Fischer flange	Fischer flange
7-pole, neg.	7-pole, neg.	7-pole, neg.
•	•	•
9143BA (000-766)	9143BA (000-766)	9143BA (000-766)

1-Component Quartz Force Link, Low Force

Technical Data		Туре	9203	9205
↑ <u></u>	D G Fz			
Measuring range	Fz	N	- 500 500	<i>–</i> 50 50
Calibrated meas. ranges	Fz Fz Fz	N N N	0 5 050 / 0 50 0500 / 0 500	00,5 / 0 0,5 05 / 0 5 050 / 0 50
Sensitivity	Fz	pC/N	≈-45	≈–115
Dimensions	D H G	mm	M10×1 28,5 M3 (female thread)	M10×1 28,5 M3 (female thread)
Rigidity	C _{A,z}	N/µm	≈40	≈4
Natural frequency	f _n (z)	kHz	>27	>10
Weight		g	13	19
Operating temp. range 1)		°C	-150 240	-50 150
Connector			KIAG 10-32 neg.	KIAG 10–32 neg., radial
Deg. of protection to IEC/EN 60529 screwed with cable (e.g. 1631C) IP65 welded with cable (e.g. 1983AD) IP67			•	•
Preloaded			•	•
Ready for measurement			•	•
Datasheet: see www.kistle	r.com		9203 (000-127)	9205 (000-129)
Accessories				
Coupling element Dimensions		Type D (mm) H (mm)	9405 6,3 18	9405 6,3 18
Force introducing cap Dimensions		Type D (mm) H (mm)	3.220.139 6,3 7	3.220.139 ²⁾ 6,3 7

 $^{^{\}mbox{\tiny 1)}}$ operating temperature range depends on the cable used $^{\mbox{\tiny 2)}}$ included in delivery

9207	9215A	9217A
	The Local Part of the Local Pa	TO STATE OF THE PARTY OF THE PA
-50 50	-20 200	-500 500
00,5 / 0 0,5 05 / 0 5 050 / 0 50	0 2 0 20 0 200	0 5 050 / 0 50 0500 / 0 500
≈–115	≈–95	≈-105
M10×1 28,5 M3 (female thread)	M5×0,5 12,5 M2 (female thread)	M10×1 28,5 M3 (female thread)
≈4	≈100	≈15
>10	>50	>20
19	2,5	16
-50 150	-50 180	-80 205
KIAG 10–32 neg., axial	M4×0,35 neg.	KIAG 10-32 neg.
•	•	•
•	•	•
•	•	•
9207 (000-130)	9215 (000-487)	9217A (000-546)
9405 6,3 18		9405 6,3 18
3.220.139 ²⁾ 6,3 7	3.220.217 ²⁾ 4 3,8	3.220.139 6,3 7

1-Component Quartz Force Link, Miniature

Technical Data		Туре	9210	9211B
	Fz H	<u> </u>		all car
Measuring range	Fz	kN	0 0,25	0 2,5
Calibrated meas. ranges	Fz Fz	kN kN	0 0,25	0 0,25 0 2,5
Rigidity	$C_{A,z}$	kN/μm	0,4	0,4
Natural frequency	f _n (z)	kHz	>200	≈200
Sensitivity	Fz	pC/N	≈-10	≈-4,4
Dimensions	D H G	mm mm	3,5 4,7	6
Weight		g	1	1,5
Operating temp. range 1)		°C	-40 200	-40 200
Connector			Fischer 102 Triax	Fischer 102 Triax
Cable technology Single wire with/without pl Coaxial Replaceable cable	lug		•	•
Deg. of protection to IEC/E	N 60529	IP65	•	•
Preloaded				
Ready for measurement			•	•
Datasheet: see www.kistler.com			9210 (000-601)	9211 (000-555)
Accessories				
Thrust washer ²⁾		Туре	9406	9411
Dimensions		D (mm) H (mm)	3,4 2	5,5 2

 $^{^{\}mbox{\tiny 1)}}$ operating temperature range depends on the cable used $^{\mbox{\tiny 2)}}$ included in delivery

9213B 9204 9212

0 10	-2,2 22,2
	0 2,2
0 1,0	0 22,2
0,16	0,87
≈80	≈70
≈-1,6	≈–11
12,6 9,5 M2,5 (female thread)	17,8 12,7 10-32 UNF
	19
	– 196 150
Fischer 102 Triax	10–32 UNF
•	•
•	•
	•
•	•
9204 (000-128)	9212 (000-418)
	≈80 ≈-1,6 12,6 9,5 M2,5 (female thread) 8 -40 200 Fischer 102 Triax • • •

Multi-component Force Sensors.

Kistler's piezoelectric sensors with multiple measuring directions are the elite class of piezoelectric force measuring instruments. These highly sensitive measuring elements are compactly embedded in the case, which is made of selected high-grade steel.

Multi-component load washers are the basic elements of the measurement technology. The sensor elements themselves are only slightly preloaded; they are integrated into the customer's structure and installed with the required preload. This preload corresponds to a load offset. Our Force Links can be used directly by customers for immediate measurements. These preloaded quartz Force Links are calibrated in the factory. They can be used in both directions along all measuring axes.

Multi-component force sensors are generally installed in groups of four, in what are known as dynamometers or measurement platforms. Single signals from the piezoelectric sensors can be summed by grouping the individual connectors together. This makes it possible to set up dynamometers that cover the range from 3-component force measurements to 6-component force/moment measurements. For this purpose, Kistler offers prepared sensor kits, as well as ready-to-use dynamometers.

Benefits

- Multi-component measurement
- Extremely rigid, so high natural frequencies can be attained
- Durable
- · High loading capacity
- Compact design

2-Component Sensors, Miniature

Technical Data		Туре	9345B	9365B
	P FZ MZ P		SILER	SILER
Measuring range	Fz Mz	kN N∙m	–10 10 –25 25	–20 20 –200 200
Calibrated meas. ranges	Fz Mz	kN N·m	0 1 0 10 02,5/0 2,5 025/0 25	0 2 0 20 020/0 20 0200/0 200
Rigidity (calculated)	C _{A,z} C _{T,z}	kN/μm N·m/μm	≈1,7 ≈0,19	≈2,8 ≈0,92
Natural frequency	f _n (z) f _n (Mz)	kHz kHz	>41 >32	>33 >25
Sensitivity	Fz Mz	pC/N pC/N·m	≈-3,7 ≈-190	≈-3,6 ≈-140
Dimensions	D H	mm mm	39 42	56.5 60
Weight		g	267	834
Operating temperature range		°C	-40 120	-40 120
Connector			V3 neg.	V3 neg.
Deg. of protection to IEC/EN 60529 screwed with cable (e.g. 1698AD)		IP65	•	•
Preloaded			•	•
Ready for measurement			•	•
Datasheet: see www.kistler.com			9345B (000-630)	9345B (000-630)

3-Component Force Sensors

 Technical Data		Туре	9017C/9018C	9027C/9028C
	D D F	ix y		511
Measuring ranges	Fx, Fy Fz	kN kN	-1,5 1,5 -3 3 Standard installation with 9,5 kN preloading	-4 4 -8 8 Standard installation with 20 kN preloading
Calibrated meas. ranges	Fx, Fy Fz Fz (without preloading)	kN kN kN	0 1,5 0 3 0 12,5	0 4 0 8 0 28
Sensitivity	Fx, Fy Fz	pC/N pC/N	≈-25 ≈-11	≈-7,8 ≈-3,8
Dimensions	D d H	mm mm mm	19 6,5 10	28 8,1 12
Rigidity	C _{S,xy} C _{A,z}	kN/μm kN/μm	0,3 1,4	0,6 2,2
Weight	752	g	14	30
Operating temperature ra	ınge	°C	-40 120	-40 120
Connector			V3 neg.	V3 neg.
Deg. of protection to IEC/EN 60529 screwed with cable (e.g. 1698AA/AB) IP65 welded with cable (e.g. 1698ACsp) IP67		•	•	
Datasheet: see www.kist			9017C (000-960)	9027C (000-726)
Accessories				
Preloading element Thread × pitch/length Preloading force		Type Fv (kN)	9460 M6×0,75/29 9,5	9461 M8×1/40 20
Wrench adapter		Туре	9479	9475
Preloading element Thread × pitch/length Preloading force		Type Fv (kN)		
Wrench adapter		Туре		
Preloading element Thread × pitch/length Preloading force		Type Fv (kN)		
Wrench adapter		Туре		

9067C/9068C

9077C/9078C

Source Control of the	SN15 31211	SN 1531217
-15 15 -30 30	-30 30 -60 60	-75 75 -150 150
Standard installation with 70 kN preloading 0 15	Standard installation with 140 kN preloading 0 30	Standard installation with 350 kN preloading 0 75
0 30	0 60	0 150
0 100	0 200	0 500
≈-8,1	≈-8,1	≈-4,2
≈-3,7	≈-3,9	≈-2
45 14,1	65 26,5	105 40,5
14	21	26
1,9	2,4	8,4
6,1	8	26
91	285	1040
-40 120	-40 120	-40 120
V3 neg.	V3 neg.	V3 neg.
•	•	•
9047C (000-592)	9067C (000-609)	9077C (000-610)
9465	9451A	
M14×1,5/57 70	M20×1,5/78 140	
70	140	
9472	9471	
		9455
		M40×2/105 350
		330
		9473
	9459	
	M26×0,75/76	

www.kistler.com 29

140

9477

3-Component Quartz Force Links

Technical Data Type 9317C 9327C

y kN kN	-0,5 0,5 -3 3	-1 1 -8 8
y kN kN	0 0,05 / 0 0,5 0 0,3 / 0 3	0 0,1 / 0 1 0 0,8 / 0 8
pC/N pC/N	≈-25 ≈-11	≈-7,8 ≈-3,8
/×H mm	25×25×30	42×42×42
kN/µm kN/µm	0,19 0,9	0,39 1,4
, f _n (y) kHz kHz	≈5,6 ≈20	≈3,2 ≈12
g	85	380
°C	-40 120	-40 120
	V3 neg.	V3 neg.
529 A/AB) IP65 (sp) IP67	•	•
	•	•
	•	•
	•	•
1	9317C (003-124)	9327C (000-725)
	kN y kN kN y pC/N pC/N pC/N xH mm kN/µm kN/µm kN/µm f_n(y) kHz kHz g °C 529 A/AB) IP65 sp) IP67	kN

¹⁾ disregarding bending

9347C 9367C

-10 10 -60 60	-30 30 -150 150
0 1 / 0 10 0 6 / 0 60	0 3 / 0 30 0 15 / 0 150
≈-7,6 ≈-3,9	≈-3,9 ≈-1,95
80×80×90	120×120×125
1,2 3,8	3,2 8,2
≈ 2,4 ≈ 6	≈2 ≈6
3000	10500
-40 120	-40 120
V3 neg.	V3 neg.
:	:
	•
•	•
•	•
9367C (000-613)	9377C (000-612)
	-60 60 0 1 / 0 10 0 6 / 0 60 ≈ -7,6 ≈ -3,9 80×80×90 1,2 3,8 ≈ 2,4 ≈ 6 3000 -40 120 V3 neg. • • •

Multi-component Dynamometers / Force Measurement Platforms

Technical Data		Туре	9119AA1	9119AA2	9129AA
		♣ H	W Fz Fx Fx Fx	H KISTLER	W Fz Fx Fx
Measuring range	Fx, Fy Fz Mz	kN kN Nom	-4 4 -4 4	-4 4 -4 4	-10 10 -10 10
Calibrated meas. ranges	Fx, Fy	kN	0 0,04 0 0,4	0 0,04 0 0,4	0 0,1 0 1
	Fz	kN	0 4 0 0,04 0 0,4 0 4	0 4 0 0,04 0 0,4 0 4	0 10 0 0,1 0 1 0 10
	Mz	N·m			
Natural frequency	$f_n(x)$ $f_n(y)$ $f_n(z)$ $f_n(Mz)$	kHz kHz kHz kHz	≈6,0 ≈6,4 ≈6,3	≈4,3 ≈4,6 ≈4,4	≈3,5 ≈4,5 ≈3,5
Sensitivity	Fx Fy Fz Mz	pC/N pC/N pC/N pC/Nm	≈-26 ≈-13 ≈-26	≈-26 ≈-13 ≈-26	≈-8 ≈-4,1 ≈-8
Dimensions	L W H D	mm mm mm	39 80 26	55 80 26	90 105 32
Weight		kg	0,93	1,35	3,2
Operating temperature rang	je	°C	–20 70	-20 70	-20 70
Connector			Fischer flange, 9-pole, neg.	Fischer flange, 9-pole, neg.	Fischer flange, 9-pole, neg.
Deg. of protection to IEC/EN with cable connected	N 60529	IP67	•	•	•
Ready for measurement			•	•	•
Datasheet: see www.kistler.	com		9119AA1 (003-060)	9119AA2 (003-055)	9129AA (000-709)
Accessories					
Connecting cable		Туре	1687B5 (3-component), 1677A5 (6-component)	1687B5 (3-component), 1677A5 (6-component)	1687B5 (3-component), 1677A5 (6-component)
			1689B5 (3-component), 1679A5 (6-component)	1689B5 (3-component), 1679A5 (6-component)	1689B5 (3-component), 1679A5 (6-component)

 $^{^{1)}}$ depending on cover plate size and material $^{2)}$ mounted on steel cover plate, $300 \times 300 \times 35$ mm

9139AA	9255C	9257B	9272	9366CC
W FZ FX FX	H Fy	H Fx Fy	H Fy	Fz Fx
–30 30 –30 30	-30 30 -10 60	-5 5 -5 10	-5 5 -5 20 -200 200	-25 25 ¹⁾ -25 60 ¹⁾
0 0,3 0 3	0 3 0 30	0 0,5 0 5	0 0,5 0 5	0 2,5 ¹) 0 25 ¹)
0 30 0 0,3 0 3	0 6 0 60	0 1 0 10	0 2 0 20 0 ±20 0 ±200	0 6 ¹) 0 60 ¹)
≈2,9 ≈2,9 ≈3,0	≈2,2 ≈2,2 ≈3,3	≈2,3 ≈2,3 ≈3,5	≈3,1 ≈3,1 ≈6,3 ≈4,2	≈0,2 ≈1,6 ²⁾ ≈0,2 ≈1,6 ²⁾ ≈0,2 ≈1,6 ²⁾
≈-8,2 ≈-4,2 ≈-8,2	≈-7,9 ≈-7,9 ≈-3,9	≈-7,5 ≈-7,5 ≈-3,7	≈-7,8 ≈-7,8 ≈-3,5 ≈-160	≈ -7,8 ≈ -7,8 ≈ -308
140 190 58	260 260 95	170 100 60	70 100	90 72
12,9	52	7,3	4,2	7
–20 70	–20 70	0 70	0 70	-20 70
Fischer flange, 9-pole, neg.	Fischer flange, 9-pole, neg.			
•	•	•	•	•
•	•	•	•	

Strain Sensors.

Piezoelelectric sensors from Kistler can be used for high-resolution measurements of the strains occurring on a structure.

To achieve this, the sensor is mounted in a suitable position. If an indirect force measurement is required, the sensor is calibrated. The relevant factors here are the geometry of the structure, the material's modulus of elasticity and the mechanical stress.

$$=\frac{F}{A}$$
 and strain $=\frac{\Delta I}{I_0}$

Surface strain sensors are attached to the structure with the mounting screw. The structure's strain is transmitted to the measuring element through static friction.

Strain measuring pins need a cylindrical mounting bore in which the sensor is then inserted and preloaded. Kistler offers strain measurement sensors with axial and radial alignment to the axis of the bore hole.

Benefits

- · Durable, no creep
- · Protected against overload
- Cost-to-benefit ratio
- · High loading capacity
- · Simple to install
- Fault-resistant
- · Straightforward retrofitting

Surface Strain Sensor

Technical Data Type 9232A... 9237B... 9238B...

μ	-600 600	-800 800	-20 20 to -800 800
μ	0300 0 300	0 500	0 50 0 500
pC/µ	≈-80	≈ - 34	
V			±10 (programmable ±1 10)
mm mm mm	40 17 15	51,5 25,4 26,7	68,1 26,9 27,5
kHz	≥12	≥6	
g	50	165/190	190
°C	0 70	- 30 120	-10 70
	KIAG 10–32 neg.	KIAG 10–32 neg.	M12×1 8-pole, shielded
			RS-232C
Deg. of protection to IEC/EN 60529 screwed with cable (e.g. 1631C) Welded with cable (e.g. 1983C) IP67 screwed with cable (e.g. 1787A) IP67		•	•
	•	•	•
	9232A (000-137)	9237B (000-823)	9238B (000-822)
	PC/μ V mm mm mm kHz g °C	μ 0300 0 300 pC/μ ≈ -80 V mm 40 mm 17 mm 15 kHz ≥12 g 50 °C 0 70 KIAG 10-32 neg.	μ 0300 0 500 pC/μ ≈-80 ≈-34 V mm 40 51,5 25,4 26,7 26,7 26,7 26,7 26,7 26,7 26,7 26,7

^{*} Data valid only for the test setup used at Kistler.
For precise force measurements, the sensor must be recalibrated after it is mounted.

Strain Measuring Pin

Technical Data	Type	9240A	9241C

Measuring range µ		μ	0 500	0 500
Calibrated meas. ranges* μ		μ	0 200	0 200
Sensitivity*		pC/µ	≈-9,5	≈-15
Dimensions	D	mm	8	10
	L	mm	14,5	18
Hollow preloading bolt				
Natural frequency	f _n	kHz		
Weight		g	34	38
Operating temperature range °C		°C	-40 200	-40 200
Connector			acc. to choice: KIAG 10–32 pos. M3 pos.	acc. to choice: KIAG 10–32 pos. Mini-Coax neg.
Deg. of protection to IEC/EN 60529 with connected cable with cable Type 1983AB and		IP64	•	•
welded-on plug IP67		IP67		
Datasheet: see www.kistler.com			9240A (003-229)	9241C (000-140)

Accessories			
Mounting tool	Туре	1300A161A100	1393B
	Туре	1300A163A300	1393Bsp100-300
Force distributing cap	Туре		
Ground isolation set	Туре		
Reamer	Туре		
Screw tap	Туре		

^{*} Data valid only for the test setup used at Kistler.
For precise force measurements, the sensor must be recalibrated after it is mounted.

D	CHIMINS .	minim to an a second
-1500 1500	-1500 1500	-1400 1400
(with nominal preload)	(with nominal preload)	(with nominal preload)
0 350	0 350	not calibrated
≈-15	≈15	≈8,6
8	M10×1	M5×0,5
13	29	23,7
M10×1		
>110	>50	
4,8 (without cable and preloading screw)	36	2,5
-40 200	-40 350	-40 200
M4×0,35 neg.	Fischer KE 102 neg.	M4×0,35 neg.
•	•	•
•	·	•
9243B (000-538)	9245B (000-142)	9247A (000-143)
1385A200		1300A9
1385sp100-800/1387sp100-800		
9841		
9487A		
9487A 1300A21	1300A21	1300A79/1300A79Q01

1-Component Strain Gage Force Sensors

Technical Data		Туре	4576A0,5	4576A1	4576A2
Measuring range	Fz	kN	-0,5 0,5	-1 1	-2 2
Dimensions	Н	mm	16	16	16
	D1	mm	54,5	54,5	54,5
	TK	mm	45	45	45
	X	mm	4,5	4,5	4,5
	Υ	mm	8	8	8

Type 4576A...

Technical Data		Туре	4576A5	4576A10	4576A20
Measuring range	Fz	kN	- 5 5	-10 10	-20 20
Dimensions	Н	mm	16	16	25
	D1	mm	54,5	54,5	79
	TK	mm	45	45	68
	X	mm	4,5	4,5	4,5
	Υ	mm	8	8	8

Technical Data		Туре	4576A50	4576A100	4576A200
Measuring range	Fz	kN	–50 50	-100 100	–200 200
Dimensions	Н	mm	35	50	50
	D1	mm	119	155	155
	TK	mm	105	129	129
	X	mm	6,6	13,5	13,5
	Υ	mm	11	20	20

General Technical Data		
Nominal sensitivity	mV/V	1,5 (optional: 1,0)
Weight	Kg	0,25 5,0
Operating temperature range	°C	15 70
Service temperature range	°C	-30 80
Bridge resistance	Ω	350
Connector for maXYmos family	у	D-Sub 9-pole plug
Deg. of protection to IEC/EN 60529		IP52 (0 10 kN) IP67 (20 200 kN)
Datasheet: see www.kistler.co	m	4576A (000-675)

Accessories	
Connecting cable, 5 m, Type 6-pole/6-pole	KSM071860-5
Connecting cable, 5 m, Type 6-pole/free	KSM103820-5

Type 4577A...

Technical Data		Туре	4577A0,1	4577A0,2	4577A0,5	4577A1
Measuring range	Fz	kN	0,1	0,2	0,5	1
Bridge resistance		Ω	350	350	350	350
Dimensions	H1 D1 D5	mm mm mm	9,9 31,8 19	9,9 31,8 19	9,9 31,8 19	9,9 31,8 19

Technical Data		Туре	4577A2	4577A5	4577A10	4577A20
Measuring range	Fz	kN	2	5	10	20
Bridge resistance		Ω	350	700	700	700
Dimensions	H1	mm	9,9	9,9	9,9	16
	D1	mm	31,8	31,2	31,2	37,6
	D5	mm	19	19,5	19,5	25,7

Technical Data		Туре	4577A50	4577A100	4577A200
Measuring range	Fz	kN	50	100	200
Bridge resistance		Ω	700	700	350
Dimensions	H1 D1 D5	mm mm mm	16 37,6 25,7	25,4 50,3 34,7	38,1 76,2 45

General Technical Data		
Nominal sensitivity	mV/V	1
Weight	Kg	0,04 1,2
Operating temperature range	°C	15 70
Service temperature range	°C	-20 100
Connector for maXYmos fami	ly	D-Sub 9-pole plug
Deg. of protection to IEC/EN 60529		IP64
Datasheet: see www.kistler.co	om	4577A (000-674)
Datasheet: see www.kistler.co	om	4577A (000-674)

Accessories	ccessories				
Connecting cable, 5 m, 6-pole/6-pole	Туре	KSM071860-5			
	113				
Connecting cable, 5 m, 6-pole/free	Туре	KSM103820-5			

1-Component Strain Gage Force Sensors

Туре 4579А...

Technical Data		Туре	4578A0,1	4578A0,2	4578A0,5
Measuring range	Fz	kN	-0,1 0,1	-0,2 0,2	-0,5 0,5
		KIN			
Dimensions	Α	mm	70	70	70
	C	mm	20	20	20
	F	mm	6,4	6,4	6,4
	Μ	mm	M12	M12	M12
	G	mm	28	28	28
	TK	mm	60	60	60

Technical Data		Туре	4578A1	4578A2	4578A5
Measuring range	Fz	kN	-1 1	-2 2	<i>-</i> 5 5
Dimensions	Α	mm	70	70	70
	C	mm	20	20	20
	F	mm	6,4	6,4	6,4
	Μ	mm	M12	M12	M12
	G	mm	28	28	28
	TK	mm	60	60	60

Technical Data		Туре	4578A10
Measuring range	Fz	kN	-10 10
Dimensions	Α	mm	70
	C	mm	20
	F	mm	6,4
	M	mm	M12
	G	mm	28
	TK	mm	60

General Technical Data			
Nominal sensitivity	mV/V	2,0±0,005	
Weight (without cable)	Kg	≤0,5	
Operating temperature range	°C	15 50	
Service temperature range	°C	-20 50	
Bridge resistance	Ω	350	
Connector for maXYmos fam	nily	D-Sub 9-pole plug	
Deg. of protection to IEC/EN	60529	IP42	
Datasheet: see www.kistler.com		4578A (000-866)	

Accessories				
orce distributing cap	Туре	4578AZ01		

Type 4579A...

Technical Data		Туре	4579A20	4579A50	4579A100
Measuring range	Fz	kN	-20 20	-50 50	-100 100
Dimensions	Α	mm	150	150	165
	C	mm	40	40	50
	F	mm	11	11	13
	M	mm	M24×2	M24×2	M36×3
	G	mm	40	40	42
	TK	mm	130	130	145

Technical Data		Туре	4579A200	4579A300	4579A500
Measuring range	Fz	kN	-200 200	-300 300	-500 500
Dimensions	Α	mm	165	203	203
	C	mm	50	94	94
	F	mm	13	13	13
	Μ	mm	M36×3	M45×3	M45×3
	G	mm	42	64	64
	TK	mm	145	165	165

General Technical Data		
Nominal sensitivity	mV/V	2,0±0,005
Weight (without cable)	Kg	3,7 14,4
Operating temperature range	°C	15 50
Service temperature range	°C	-20 50
Bridge resistance	Ω	350
Connector for maXYmos family	/	D-Sub 9-pole plug
Deg. of protection to IEC/EN 6	0529	IP67
Datasheet: see www.kistler.com		4579A (000-867)

Accessories				
Force distributing cap, measuring range 20/50 kN	Туре	4579AZ20/50		
Force distributing cap, measuring range 100/200 kN	Туре	4579AZ100/200		
Force distributing cap, measuring range 300/500 kN	Туре	4579AZ300/500		

Most Kistler sensors operate with a measuring element that essentially consists of thin quartz plates, disks or rods

Basics of Measurement Technology.

Piezoelectric Measurement Technology

Kistler offers piezoelectric and strain gage sensors. The piezoelectric sensors are ideal for measuring tasks with exceptionally extreme requirements with regard to geometry, temperature range and dynamics. Kistler therefore relies mainly on the piezoelectric principle for measuring dynamic forces in assembly and testing.

Pierre and Jacques Curie discovered the piezoelectric effect in 1880. When placed under a mechanical load (Greek "pie-zein": to press or squeeze), piezoelectric materials generate electrical charges. The finite insulation resistance means that purely static measurements are impossible with piezoelectric sensors. Together with signal conditioning devices from Kistler, however, these sensors have excellent quasistatic and dynamic measurement properties.

In 1950, Walter P. Kistler patented the charge amplifier for piezoelectric signals, paving the way for the exploitation of an effect that had been known for decades.

Particularly good use can be made of the piezoelectric effect with a quartz crystal: when subject to a mechanical load, it generates a charge signal that is directly proportional to the acting force. The benefit: due to the high rigidity of the crystal, the measuring deflection is low. Quartz can be used to cut both pressure-sensitive and shear-sensitive elements. Various piezo-effects are differentiated according to the position of the polar crystal axes in relation to the acting force:

- Longitudinal effect
- Shear effect
- Transverse effect

Benefits

- Compact size
- Extensive force measuring range
- Excellent overload protection
- No wear
- High rigidity and natural frequency
- Measurements without almost any deflection are possible

Longitudinal Effect

A charge is developed on the surfaces to which the force is applied, where it can be measured via electrodes. In the case of the longitudinal piezoelectric effect, the magnitude of the electric charge Q depends on the piezoelectric coefficient and the applied force $\mathbf{F}_{\mathbf{x}}$ and not on the dimensions of the crystal disks. The only way to increase this charge yield is to connect several disks mechanically in series and electrically in parallel (factor n). The magnitude of the output charge then becomes:

The piezoelectric coefficient d_{11} is dependent on direction, and it indicates the crystal's degree of force sensitivity in the direction of the corresponding crystallographic axis. The position of the crystal cut therefore determines the properties and purpose of use the quartz force link. Piezoelectric elements cut to produce the longitudinal effect are sensitive to compression forces and therefore mainly suitable for simple and sturdy sensors to measure forces.

Shear Effect

Similarly to the longitudinal effect, the piezoelectric sensitivity involved in the shear effect is independent of the size and shape of the piezoelectric element. In this case too, the charge is developed on the piezo element's loaded surfaces. For a load in the x-direction applied to n elements connected mechanically in series and electrically in parallel, the charge is:

$$Q_x = 2 \cdot d_{11} \cdot F_x \cdot n$$

Shear-sensitive piezo elements are used for sensors measuring shear forces, torque and strain, and also for acceleration sensors. They are suitable for manufacturing sensors whose excellent performance is unaffected by temperature fluctuations, as the changes in the stresses (preloading) in the sensor structure – caused by temperature fluctuations – act in a direction perpendicular to the sensitive shear axis.

Transverse Effect

In the transverse effect, a force F_y acting in the direction of one of the electrical crystal axes y produces a charge on the surfaces of the corresponding electrical axis x. In contrast to the longitudinal piezoelectric effect, the magnitude of this charge (which occurs on the unloaded surfaces) is dependent on the geometric dimensions of the piezoelectric element. Assuming a solid rectangular element with dimensions a (thickness) and b (height/length), the charge is:

$$Q_v = -d_{11} \cdot F_v \cdot b/a$$

The transverse effect therefore makes it possible to obtain a greater charge yield through suitable shaping and alignment of the piezoelectric elements. Elements exhibiting this effect can be used for high-sensitivity pressure, strain and force sensors.

Charge Amplifiers

Charge amplifiers convert the charge produced by a piezoelectric sensor into a proportional voltage:

$$U_o = \frac{-Q}{C_r} \cdot \frac{1}{1 + \frac{1}{AC}(C_t + C_r + C_c)}$$

the amplifier acts as an integrator, constantly compensating the electrical charge produced by the sensor on the range capacitor, in proportion to the acting measurand. Most Kistler charge amplifiers allow adjustment of sensor sensitivity and measuring range.

Time constant and drift

Two of the more important considerations in the practical use of charge amplifiers are the time constant and the drift. The time constant is defined as the discharge time of a capacitor by which 1/e (37 %) of the initial value has been reached:

$$= R_{+} \cdot C_{+}$$

Drift is defined as an undesirable change in the output signal over a long period of time. This drift determines the potential duration of quasistatic measurements.

Measuring Methods

Kistler's sensors allow both direct and indirect force measurements. This permits flexible positioning of the sensors, so solutions are available for every conceivable measuring task.

Preloading

To achieve measurements of the desired accuracy, piezoelectric sensors are preloaded by 20 % to 70 % for symmetrical compres-

sion and tensile forces, depending on their design and application. Therefore, the resultant measuring range actually corresponds to the total measuring range stated on the datasheet less the preloading value.

Installation variants

For direct measurements, the sensor is positioned fully in the force flux, and it measures the entire force. This approach yields high measurement accuracy that is virtually independent of the force application point. If the sensor cannot be positioned directly in the force flux, it will only measure part of the force; the remainder passes through the structure in which it is mounted (known as the force shunt). With indirect force measurement, strain sensors are used to measure the process force via the structural strain. The deformation resulting from application of force to a structure can be measured as force-proportional strain. The process force is therefore determined indirectly from the surface or structural strain. Kistler strain sensors internally convert strain into a proportional force, and generate a corresponding charge signal. This is why they are often referred to as force-strain sensors. The sensitivity is determined as electric charge Q (pC) per unit strain μ (μ m/m).

Direct Force Measurement in the Force Flux

In this case, the entire process force passes through the sensor (force shunt quota $n < \approx 10 \%$).

The sensor is mounted fully in the force flux and it measures the entire process force.

Benefits

- High sensitivity
- · High measuring accuracy
- · High repeatability
- Good linearity and low hysteresis
- Wide range of preloaded calibrated sensors that are easy to mount

Force Shunt Measurement

A fraction of the process force passes through the sensor (n \approx 10 ... 99 %).

The sensor is installed in the machine's structure. Most of the process force usually passes into the shunt.

Benefits

- Overload protection
- Cost-effective design
- Measurement of process forces up to 100/(100-n) times the sensor's measuring range
- Good measurement accuracy under constant conditions
- · High repeatability

Indirect Force Measurement

Only a negligible part of the process force passes through the sensor (n >>99 %).

Benefits

- · Most convenient mounting method
- Easily retrofitted on existing machines
- Overload protection
- · Cost-effective design

Strain Gage Measurement Technology

The principle of operation of the strain gage is based on a physical effect: the electrical resistance of a wire changes in proportion to any change in length caused by stretching or compression. Kistler uses this principle to measure the torque on rotating shafts and in some force sensors.

Strain gages measure the deformation of structures in the linearly elastic range.

Principle of Operation

When the measuring wire undergoes a strain $\,$, its length L, cross-sectional area A and specific resistance $\,$ will change. The wire is commonly replaced with thin (\approx 0,005 mm) metallic foil from which a meandrous pattern is etched to form a measuring grid. This produces strain gages with very small dimensions (e.g. 1×1 mm measuring grids) capable of measuring at an almost exact point.

Force Detectors

For use in strain gage load sensors, the gages are bonded onto a force detector made of a very strong material that exhibits linearly elastic characteristics up to the rated load. This means that the mechanical stress produced by the load on the force detector is linearly related to the strain according to Hooke's law:

 $= E \cdot$

Wheatstone Measuring Bridge

This measuring bridge consists of four resistors or strain gages. It is supplied with voltage $U_{\rm S}$. The output voltage $U_{\rm B}$ is taken off the middle of the bridge. The sensitivity of the bridge $E_{\rm B}$ gives the relationship between output voltage with gage factor (k) and strain .

$$E_B = \frac{U_B}{U_S} = k \cdot$$

Full bridges are almost always used for strain gage sensors. The bridge is generally supplemented by other resistors to compensate for various factors.

Measuring Chain with Strain Gages

The voltages produced by the bridge are in the range of a few mV. The leads for the unamplified analog signals are kept as short as possible to minimize the effect of any electromagnetic fields. A differential amplifier generally amplifies and then digitizes the voltage. Such amplifiers have a very high input resistance and high common-mode rejection.

Benefits of Strain Gage Sensors

- Allow tensile and compression measurements without having to preload measuring elements
- Static measurements are possible over long periods of time
- Absolute measurement values

Measuring Chains.

In order to integrate sensor technology into a given application, it is necessary to clarify these points in order to provide the basis for selecting the relevant components to generate the measuring chain:

- · Measuring range and mode: direct, indirect, and technology
- · Ambient conditions: temperature, gases and liquids, mechanics
- Signal analysis with Kistler instrument or using customer's system

Ideally, the measurand should be captured as close to the process as possible; the easiest way to implement this is with a preloaded and calibrated sensor. Load washers and strain sensors are calibrated in the installed condition.

The high-insulation cable, with a typical insulation value >1E13 Ohm, is a particularly important element of piezoelectric measuring technology, and it should be selected according to the ambient conditions.

After conversion of the sensor signals, they can be evaluated by an amplifier in the customer's system. For the analysis of dedicated XY processes (such as force-displacement monitoring), the maXYmos family is highly suitable thanks to its user-friendly operation and wide variety of interfaces (Y-channel: piezo, strain gage, +/- 10V; X-channel: potentiometer, +/- 10V, incremental).

Measure Connect Amplify Monitor & Control

Measure Connect Amplify Monitor & Control

Sensors must be meticulously calibrated in order to guarantee reliable measurement results

Calibration.

Sensors and measuring instruments must be calibrated at regular intervals, as their characteristics and hence the measurement uncertainties can change over time as a result of frequent use, aging and environmental factors. Instruments used for calibration are traceable to national standards and subject to a uniform international quality control. Calibration certificates document calibration values and conditions.

Safe and Reliable Measurements

Quality assurance systems and product liability laws call for systematic monitoring of all test equipment needed for measuring quality characteristics. This is the only way to ensure that measurement and test results provide a reliable and dependable benchmark for quality control.

All sensors and electronic measuring devices are subject to some degree of measurement uncertainty. As the deviations involved can change over time, the test equipment must be calibrated at regular intervals.

This involves determining the deviation of the measured value from an agreed reference value, which is also referred to as the

calibration standard. The result of a calibration can either be used to assign the actual values of the measurand to the readings or to determine correction factors for them. The required information is documented on the calibration certificate.

Definition: Calibration is the use of a defined method under specified conditions to determine the relationship between a known input variable and a measured output variable.

Calibration Process

During calibration, sensors are subjected to known quantities of a physical measurand (such as force) and the corresponding values of the output variable are recorded. The magnitude of this load is accurately known, as it is measured with a traceably calibrated "factory standard" at the same time. Depending on the method, sensors are calibrated either across the entire measuring range or in a partial range:

- · at a single point,
- · continuously, or
- stepwise at several different points.

During **continuous calibration**, the load is continuously increased to the required value within a defined time and then reduced to zero within the same time. A "best straight line" passing through the origin is defined for the resultant characteristic, which is never exactly linear. The gradient of this line corresponds to the sensitivity of the sensor within the calibrated measuring range.

Step-by-step calibration involves the application of a load with or without unloading between successive increases or decreases, depending on the calibration method used. The process is halted after each increment until the measurement stabilizes.

Linearity is determined by the deviation of the characteristic from the best straight line. Hysteresis corresponds to the maximum difference between the rising and falling characteristics. Most Kistler single- or multiaxial force and torque sensors are factory calibrated.

The continuous approach is the most suitable calibration method for piezoelectric sensors. Strain gage sensors are preferably calibrated step-by-step.

Kistler offers diverse calibration options:

- The sensor equipment can be sent to the production plant
- Onsite calibration in the plant
- Calibration equipment for in-house calibration

From professional advice on installation to speedy deliveries of spare parts: Kistler's comprehensive range of services and training is at your disposal across the globe

Service: Customized Solutions from A to Z.

Kistler offers sales and service wherever automated manufacturing processes take place.

In addition to sensors and systems, Kistler offers a host of services – from professional advice on installation to speedy worldwide deliveries of spare parts. For an overview of the services we offer, visit **www.kistler.com**. For detailed information on our training courses, please contact our local distribution partners (see page 51).

Kistler Service at a Glance

- Advice
- Support with system commissioning
- · Process optimization
- Periodic onsite calibration of sensors
- Education and training events
- Development services

Kistler – At Our Customers' Service Across the Globe.

With around 1500 employees, the Kistler Group leads the global market for dynamic measuring technology. 31 group companies and over 30 distributors ensure close contact with customers, individual application support and short delivery

Datasheets and Documents

Use our search engine to download datasheets, brochures or CAD data.

Your Contacts

No matter whether you come to us for advice or for support with an installation on our website, you will find the contact details for your personal partner anywhere in the world.

Reliability Thanks to Kistler

Monitoring and control of joining processes provide the essential bedrock for all successful industrial production operations – in sectors as varied as the automotive and consumer goods industries, medical technology, packaging and electronics. Dependable monitoring ensures 100% quality of the end products, allowing early detection and filtering of faulty parts so as to avoid further unnecessary process

Education and Training Events

Education and training courses - when our sensors and measuring systems are explained by experienced Kistler experts are the most efficient way for you to acquire the expertise you need.

Kistler Group

Eulachstrasse 22 8408 Winterthur Switzerland Tel. +41 52 224 11 11

Kistler Group includes the Kistler Holding AG and all its subsidiaries in Europe, Asia, Americas and Australia.

Find your local contact at www.kistler.com

