

Process Instrumentation and Automation

Measuring Systems for Process Monitoring and Quality Assurance in Manufacturing, Assembly and Test Stands

Kistler – Your Partner for Efficiency and Quality

Sensors and systems for measuring forces and torques, analyzing force-displacement and force-time characteristics, and documenting quality data during assembly and product testing are just a few elements of the solutions for the sector provided by Kistler Instruments AG. From our headquarters in Switzerland, we supply assembly and testing technology as well as specific sensors and monitoring systems for combustion engines, automotive engineering, plastics processing and biomechanical engineering. Kistler's core competency lies in the development, production and implementation of sensors for pressure, force and acceleration measurement. Kistler electronic systems and expertise used for conditioning measurement signals allow analysis, control and optimization of physical processes as well as enhancement of product quality for the manufacturing industry.

Year after year the company invests 10 % of its sales in R&D to facilitate technically

innovative yet cost-effective state of the art solutions.

With a combined workforce of around

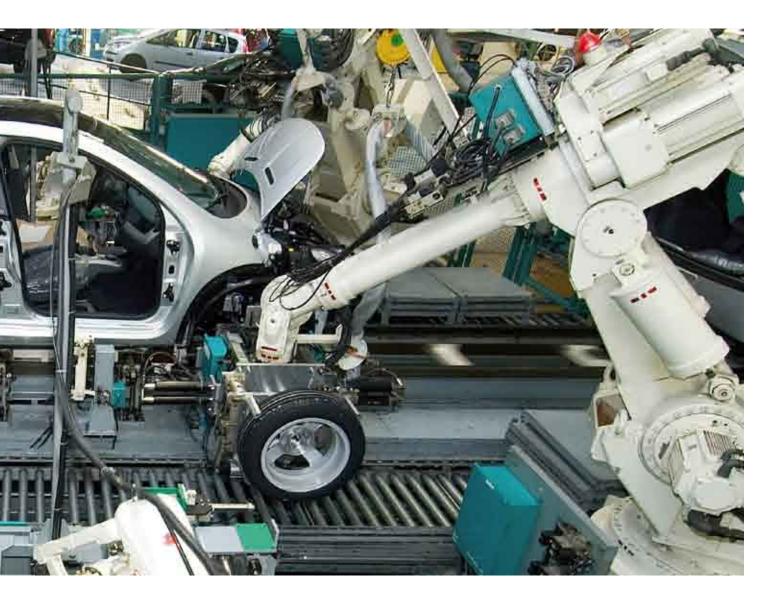
850, the Kistler Group is the world market leader in dynamic measurement technology. Twenty three group companies worldwide and more than 30 distributors ensure close contact with the customer, individual application engineering support and short lead times.

Contents

Process Monitoring for Enhanced Quality and Efficiency		4	
Monitoring Asse	embly Processes		
Benefits of Force and Torque Measurement for Assembly Processes		6	
Optimal Process Monitoring with ControlMonitors		8	
NC Joining Systems with Integral Force Monitoring		16	
Kistler Measurer	nent Technology		
Basics of Piezoelectric Measurement Technology		18	
Basics of Strain C	Gage Measurement Technology	27	
Basics of Calibration		31	
Accuracy Evaluation		36	
Force and Torque	e Measurement in Practical Applications		
Monitoring Press-Fit Processes		38	
Testing Rotary and Spring-Loaded Switches		41	
Cracking Force Measurement		44	
Monitoring Assembly of Steering Columns		46	
Monitoring Insertion Force to Protect PCBs		48	
Fully Automated 100 % Testing of Gearboxes		50	
Gearbox Endurance Test for Landing Flap Systems		52	
Fast, Flexible and Firm Joining		54	
Press Fitting with Extremely Small Forces		56	
Other Force and Torque Applications in			
Manufacturing, Assembly and Testing		58	
Product Range and Details Selection Criteria for Force Sensors		60	
Selection Criteria for Torque Sensors		65	
Kistler CAD Download Service		66	
Selection Criteria for Charge Amplifiers		67	
	for ControlMonitors and Monitoring Units	68	
Measuring:	Sensors	70	
Amplifying:	Charge and Measuring Amplifiers	112	and the second second
Analyzing:	Monitoring and	120	
	Documentation Systems		
Manufacturing:	Electromagnetic	132	-
	NC Joining Systems		
Connecting:	Cables	138	
Accessories		148	
			5
Technical Literature		168	
Product Overview by Type Numbers		169	


Process Monitoring for Enhanced Quality and Efficiency

Precision and quality are imperative in industrial manufacturing. Stiffer competition necessitates optimization of all manufacturing processes and reduction of production costs. At the same time, OEM suppliers have to move towards zerodefect production to meet more stringent quality requirements. Integrated process monitoring and quality assurance are therefore essential elements of modern automated manufacture.


Quality:

The ultimate challenge for industry Many industrial segments such as automotive, aerospace or medical engineering consider quality assurance to be the ultimate challenge, the "decathlon of engineering". Precise tuning and flawless operation of a wide range of components from different manufacturers is of crucial importance particularly in cars, aircraft and medical equipment. Such complexity calls for comprehensive information on the quality of all products, assemblies and production processes. This information is the cornerstone of well-documented quality assurance as required for certification such as ISO/TS 16949.

The adherence to quality standards is of particular importance for processes such as the assembly of individual modules, as it determines the perceived value of the finished product and hence the cost-effectiveness of the entire production process. Identifying deviations immediately after individual production sequences allows prompt and specific corrective measures and hence more accurate components for greater overall efficiency. The sooner a fault is rectified the lower the product's life cycle costs.

Sensors and measuring systems: Key components for quality production Consistent documentation of measurement and test data as a means of ensuring reliable processes and product quality is a prerequisite for efficient manufacturing of premium products. Suitable tests have to be efficiently scheduled and integrated into the manufacturing process. Kistler measuring systems play a key role in achieving these objectives. Force and torque sensors in particular offer insight into electronically visualized and documented production, assembly and test processes. On a wider scale, turnkey electromagnetic NC systems combine joining with related force monitoring. All in all, the comprehensive range of measuring instrumentation enhances the precision, repeatability, quality and reliability of industrial operations. Kistler technology is therefore a critical factor in improving the quality of products and cost-effectiveness of complex production processes.

Monitoring Assembly Processes

Assembly relies upon systematic application of press-fit, joining and threaded connection forces and torques measured and monitored in real time. Product operating or actuation forces are then determined in the course of testing. Both tasks can only be performed out on the basis of reliable force and torque measurement.

With zero-defect production the main objective of manufacturing, quality assurance and monitoring requirements is becoming increasingly exacting. For cost reasons quality assurance is often integrated directly into the workflow to allow prompt rectification of process or quality deviations. Post-production testing of press-fit connections, for example, is often scarcely possible without damage to the finished product - yet another reason why quality control has to be integrated into the production process. More often than not, assembly is a cyclical and therefore a dynamic process. Force measurement has been tried and tested as the most appropriate method of monitoring such operations.

Plus Points of Monitoring Force and Torque

- + Critical parameters in the assembly process
- + Easy, cost-efficient integration into the production process
- + Quick and easy segregation of good and bad parts
- + Easy documentation of process data
- + Simple testing of product characteristics

Force monitoring during assembly

For reliable processing and quality testing, the forces (for example joining, pressfitting or positioning) generated during assembly have to be documented and evaluated. Evaluation of the characteristic force-displacement curve is the ideal way of assessing press-fitting processes. This involves plotting dependent variables such as joining force and displacement to assess their functional relationship. The results can be used for rejecting defective parts for post-production processing or sorting them into tolerance classes.

Force measurement is also used to protect workpieces from overload. The introduction of force limits, for example, can be useful for defining the maximum joining force. Press-fitting forces can be measured directly in the load path or indirectly as a function of strains in the frame of the machine.

Benefits of Force and Torque Measurement for Assembly Processes

Joining systems with integral force monitoring

Electromechanical NC joining systems offer great flexibility, accurate positioning, extremely high repeatability and accurately defined joining forces. They are increasingly supplanting hydraulic presses and joining modules, particularly in pressfit applications. With its new generation of electromechanical NC joining modules Kistler offers a particularly compact and precise system solution for a wide variety of force-displacement monitored pressfitting and joining tasks.

Torque-controlled screw connection

Like press fitting, screw connection is one of the key methods used in assembly technology. Its most important use is application of defined preloads. Most modern mass-produced threaded connections are power assembled. As preloading forces are usually measured indirectly as a function of the tightening torque, torquecontrolled screw connection is the most widespread approach in industrial manufacturing. Many threaded connections are tightened to controlled torque levels as the most cost-effective solution.

The resultant preload force is mainly dependent on the tightening torque. Kistler's piezoelectric torque sensors can extremely accurately monitor and record the torque curve of any screw connection made. By preventing overloads and prior damage to these connections, this ensures more reliable, higher-quality products.

Quality assurance during product testing

Force and torque measurement is not only suitable for testing and monitoring production processes, but can also be used during automated production for checking finished products and their functions, for example in electric, electronic, mechanical and mechatronic systems. For instance, contact forces of plug and receptacle connectors, operating forces of pushbutton and other switches, ignition and other rotary switches, cap screw torques and torque characteristics of gearboxes and motors can be used as quality criteria. Highly sensitive sensors from Kistler monitor within very tight tolerances a very wide range of these compression and tensile forces and torques, which with ongoing miniaturization are often minute.

The reliability of electrical connections involving non-screw terminals can be checked by measuring the insertion force or using a test connector. Rotational movements in applications such as potentiometers, spark plugs or cap screws, where a reliable and reproducible method of measuring small torques is required, can also be checked. Kistler reaction torque sensors are ideal for this purpose.

Sensor Type 9215 with an outside front diameter of only 5 mm at front for measuring minute forces. This type of sensor makes it possible to scale down miniature force plates and sensor arrays to a spacing of 7,5 mm for checking applications such as cell phone keypads at just one test station

Monitoring Assembly Processes

Force and torque measurement can make assembly and testing processes more transparent. Recording force or torque as a function of time, displacement or angle is an ideal method of monitoring, controlling and documenting such processes. Kistler ControlMonitors can be used to display, evaluate and document the resulting curves. Assembly operations such as joining and screw driving and related testing are often made by automated production lines and special machinery. As the production sequence is often largely automated and the various machines unattended, the processes can only be monitored directly with some difficulty. Random checks of the finished parts are the most widely used quality control method, as 100 % monitoring of the workpieces in the course of post-production quality control during extremely short cycles is usually not considered cost-effective. As a result, production defects are detected too late and in the worst cases entire lots have to be scrapped.

Robust instrumentation in production

Integral process monitoring and quality assurance are essential elements of modern automated production. Identification of deviations immediately after individual process steps allows prompt, targeted corrective measures that improve accuracy and cut costs.

Process Monitoring with ControlMonitors

Consistent documentation of measurement and test data as a means of ensuring reliable processes and high-quality products is an essential requirement of cost-effective manufacturing. However, this demanding environment often takes its toll on integral instrumentation. The sensors must withstand dirt and mechanical stresses yet remain sufficiently versatile and durable. Reasonable costs and convenient operation are just some of the other basic requirements these systems are expected to meet.

Variety of evaluation tools for systematic analysis

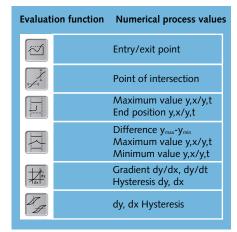
In addition to protecting machinery and tools with real-time thresholds, force and torque measurement in process monitoring is often also intended to separate good (OK) and bad (NOK) parts. The evaluation objects (EOs) used as criteria are preferably specified on the basis of the measurement curves of these two categories. The EOs must be defined to reliably identify bad parts yet tolerate the standard deviation exhibited by their good counterparts.

Monitoring and documentation

Kistler offers a broad range of CoMo® ControlMonitors to meet these extensive and varied measurement and documentation requirements. A common feature of all single- and multichannel CoMos is their monitoring, evaluation and classification of sensor signals (force, torque or strain) as a function of time or a second signal (displacement or angle) in accordance with user-defined criteria. ControlMonitors are effective for a wide variety of product testing and quality assurance tasks in addition to process monitoring. For example, the CoMo Torque uses input torque and rotational speed to additionally determine the power levels of driven assemblies.

Monitoring Assembly Processes

User-defined functionality


Monitoring plays a major role in improving the quality and safety of industrial manufacturing processes. Kistler's CoMo family provides such functionality for each and every application.

Process evaluation with up to twelve evaluation functions

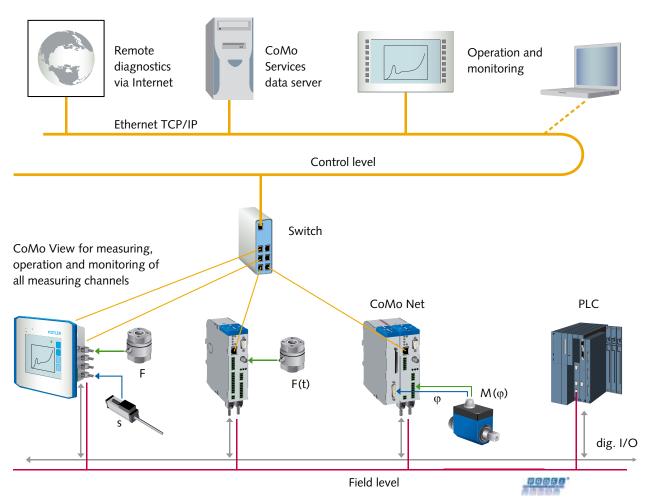
For process monitoring, the system allows combination of up to twelve different evaluation functions such as boxes, thresholds, end positioning, dy/dt or dy/ dx gradient, integral and hysteresis. It can display the point of intersection with each evaluation object as a trend or statistics such as the mean, standard deviation, cp or cpk value. The corresponding process values can also be displayed and saved in numerical form. A control signal for the result of the process evaluation (OK/ NOK) is available at the interfaces (digital outputs, Profibus DP or Ethernet).

Limit value monitoring in real time

Real-time thresholds can be set for monitoring safety criteria such as overload protection, or for actuating trigger signals to control the process.

Evaluation functions and process values

Easy calibration


Transfer function accuracy of all amplifiers (charge, displacement and strain gage) are calibrated prior to delivery. All calibration values are stored in the device, which can be recalibrated with an external charge or voltage source. Kistler recommends recalibration at two-year intervals. All devices are CE certified and comply with EMC standards. Inputs and outputs are protected against electrostatic charges (ESD) with varistors.

Evaluation with box functions

The box function is used to monitor the behavior of the signal trace as to how it enters or exits the box through the specified sides. The remaining sides must not be touched. The maximum, minimum or differential value is determined and monitored within a box. The figure shows the force curve for a bearing from force application though the actual press-fitting operation to the end position. The signal race must pass through all of the boxes. Other possible evaluation objects are end position, thresholds, hysteresis, gradient or integral. Typical force-displacement curve of Press-Fit process with evaluation box sequence

Process Monitoring with ControlMonitors

Integration of ControlMonitors into production network

PLC compatibility and internet capability The members of the CoMo family of ControlMonitors provide PLC compatible, digital I/Os for embedding into the machine's control system. Some devices can also be networked via TCP/IP and Ethernet. All parameters can be set by means of a standard web browser via Ethernet on a PC or with the Kistler browser (Applet Viewer), on a web terminal with the Windows CE[®] operating system or on an existing operating unit. Integral web servers control the HTML operator pages. Access rights for different menu levels for operators, supervisors or service personnel are password protected.

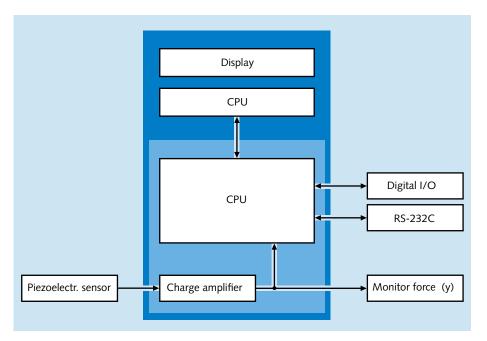
The system can therefore be accessed and operated from anywhere in the world. Remote maintenance and diagnostics allow prompt, expert, cost-effective on-site support and assistance whenever service is required. Optional field level communication via Profibus DP is also supported.

Data export to

production data acquisition systems The use of an existing network structure makes centralized storage of quality data in large, complex production facilities much easier and is a significant cost advantage. Process values and measurement curves can be transmitted periodically to the network data server. CoMo/data server compatibility servicing is included as standard.

Monitoring Assembly Processes

CoMo Logic®


Single-Channel y(t) ControlMonitor

CoMo Logic is a single-channel y(t) ControlMonitor with graphics display and charge input for monitoring timedependent measurands in manufacturing processes. It is designed for monitoring force/time characteristics of manual and automated assembly and test processes.

Three real-time thresholds programmable

CoMo Logic has three real-time thresholds and an elementary post-cycle curve analysis function. Different operating modes display the signal trace y(t) and most peak values as a trend or numerical display. For installation and adjustment both the actual and the peak value can be displayed continuously and the sensitivity adjusted during measurement. The device is operated with the front panel controls or with a PLC via the digital I/Os.

CoMo Logic consists of a measuring and a display unit, each controlled by a microprocessor. The measuring unit (monitor) scales the sensor signal and monitors the signal characteristics at a sampling rate of 10 kHz. Whenever defined real-time events occur in the cycle, such as thresholds being exceeded, the associated digital outputs are set immediately. After the cycle has been completed the curve is analyzed and the digital outputs assigned to the corresponding post-cycle events set. The measured values are then transferred to the display unit, which displays them in graphical or numerical form depending on the selected mode. A memory with 480 measurements is available for displaying the y(t) signal trace.

O CoMo Logic[®] at a Glance

- Time-dependent measurement y(t)
- Measurement and monitoring of
 - \cdot F(t) force as a function of time \cdot M(t) torque as a function of time
- Measuring ranges • FS ±50 ... 500 000 pC
- Three real-time thresholds
- Graphical display of y(t) signal trace
- Graphical display of trend of the last 118 cycle peaks
- Monitoring of up to 1 000 cycles per minute

Block diagram of CoMo Logic®

For more information on CoMo Logic, please refer to page 121.

Optimal Process Monitoring with ControlMonitors

CoMo Net[®]/CoMo View[®]

y(x) ControlMonitor with Integral Web Server

As single-channel control servers with web server functionality, CoMo Net and CoMo View are ideal for monitoring and classifying industrial processes.

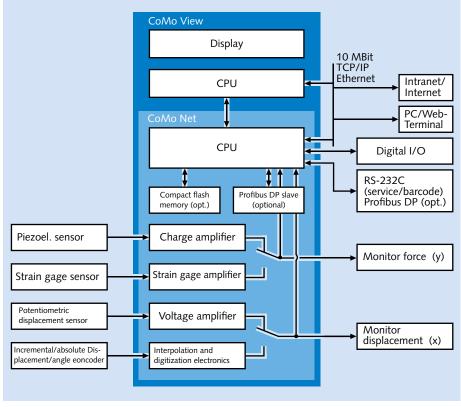
CoMo View is a multi-purpose Control-Monitor with inputs for piezoelectric and strain gage sensors, sensors with voltage output and potentiometric displacement and angle sensors. Six PLC-compatible digital I/Os allow integration into a machine control system. The devices can be networked via TCP/IP and Ethernet. All parameters (programming and visualization) can be set with a standard web browser via Ethernet on a PC or with the Kistler browser (Applet Viewer), on a web terminal with Windows CE operating system or on an existing operating unit. Intuitive operator guidance allows fast, reliable setting up of the measuring process. Real-time capability via digital I/Os and fast process and curve data export are essential monitoring features even during high throughput rates. A Profibus DP interface is available as an option (transmission rate up to 12 Mbaud).

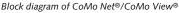
CoMo View as Terminal for CoMo Net

CoMo View's touch screen display allows direct adjustment of almost all settings. Working in a network with multichannel applications, CoMo View supports the operation and visualization of up to 24 additional CoMo Net devices. The terminal can be used in the most appropriate location without having to lay unnecessarily long signal and control connections (Ethernet and power connection only).

O CoMo Net[®] and CoMo View[®] at a Glance

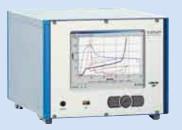
- Displacement-dependent y(x) or time-dependent y(t) measurement
- Measurement and monitoring of parameters such as:
 - \cdot F(t) force as a function of time
 - \cdot F(s) force as a function of displacement
 - \cdot M(t) torque as a function of time
 - \cdot M() torque as a function of rotational angle
 - \cdot s(t) displacement as a function of time
- 12 different evaluation functions can be combined for monitoring, installation force, curve, gradient, hysteresis, blocking force and end position
- Real-time thresholds for overload protection or speed control
- Monitor up to 20 cycles per second
- 16 sets of parameters
- High-speed data transmission for logging process
- Off-line data transformation into XML, HTML, Text, CSV with curve superimposition and Q-DAS formats
- Incremental/absolute displacement/angle encoder
- Profibus DP interface (optional)
- Compact flash memory extension module (optional)


CoMo Net®

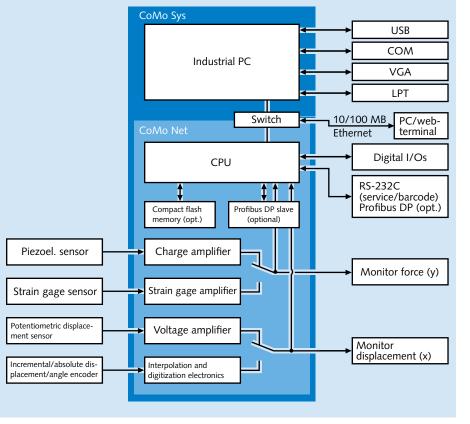

CoMo View[®] with integral 5,7" color touch screen display (320 x 240 pixels)

Terminal with 5,7" color touch screen display (320 x 240 pixels)

➡ For more information on CoMo Net and CoMo View, refer to page 122/123.



Monitoring Assembly Processes


O CoMo Sys[®] at a Glance

- Displacement-dependent y(x) or time-dependent y(t) measurement
- Expandable to maximum of 7 measuring channels
- Measurement and monitoring of • F(t) – force as a function of time
- \cdot F(s) force as a function of
- displacement
- \cdot M(t) torque as a function of time
- \cdot M(\phi) torque as a function of rotational
- angle \cdot s(t) displacement as a function of time
- 12 different evaluation functions can be freely combined for monitoring installation force, curve, gradient, hysteresis, blocking force and end position
- Real-time thresholds for overload protection or speed control
- Monitors up to 20 cycles per second
- Memory for the last 20 measuring curves for error analysis

- 16 sets of parameters for each channel
- Windows-based PC software with user management and macroprogramming
- Data storage on internal hard disk in CSV format or Q-DAS transfer format
- Comprehensive process logging (measurement curve memory, statistical memory, export filter for Microsoft Excel and operational data acquisition systems)

CoMo Sys®

*Only available in Germany

Block diagram of CoMo Sys®

CoMo Sys®

Multichannel y(x) Measuring System*

CoMo Sys is a modular system with up to seven measuring channels for force, torque or pressure as a function of displacement or time.

CoMo View has inputs for piezoelectric and strain gage sensors, sensors with voltage output and for potentiometric displacement and angle sensors. These can be flexibly tailored to the requirements of various stations to be monitored in production systems. Sixteen parameter sets or applications can be stored in memory for each channel.

The integral PC allows convenient logging of the processes. Real-time processing and subsequent evaluation are performed on the same measuring channel, with visualization on an internal 6,5" TFT color display (640x480 pixels) or an external monitor. With Windows-based PC software CoMo Sys can be used to set up, configure and manage projects.

For more information on CoMo Sys, please refer to page 125.

Process Monitoring with ControlMonitors

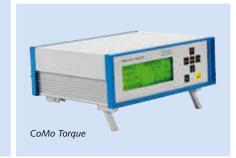
CoMo Torque

Evaluation Instrument for Torque Sensors

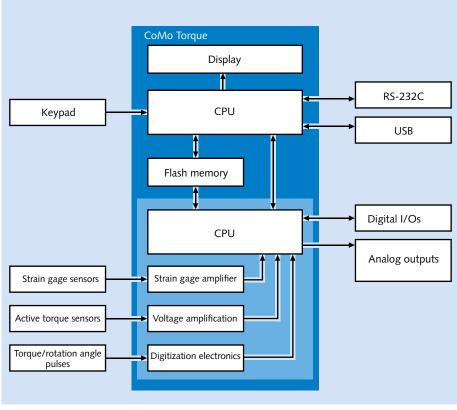
The CoMo Torque allows synchronous acquisition of torque and speed signals of rotating strain gage torque sensors Types 4501A... to ... 4504A... .

CoMo Torque is ideal for industrial and R&D applications. Strain gage sensors with standardized sensitivity or voltage/ frequency output can be connected directly.

The ease with which parameters can be set enables the CoMo Torque to be used for evaluating torque/speed or torque / rotation angle measurements in manufacturing. Its intuitive menu system allows rapid reconfiguration for new measurement and test tasks. All functions, such as taring, saving of peak values, averaging, specifying limits, display range, units and interface parameters, are easily set.


The unit has a very wide variety of industrial applications:

- Determination of the performance of driven assemblies from input torque and speed
- Design of transmission components or systems (such as clutches, brakes, gearboxes, engines and turbines)
- Monitoring of screw driving or verification of breakover point of torque wrenches
- Monitoring of assembly through evaluation of torque and rotation angles
- Checking of seat adjustments and hinges.


O CoMo Torque at a Glance

- Displacement- or time-dependent M(t) and n(t) or φ(t) measurement
- Correct display for measurand (torque, speed, rotation angle, force and me-chanical power)
- Units: N·mm, N·cm, N·m, kN·m, N, kN, rpm, W, kW, MW, degrees and Imperial/American units
- 4x20 character display
- Multilingual operator guidance
- High measuring accuracy of <0,05 %
- High sampling rate of 10 kHz
- Low-pass filter (off, 1 Hz ... 5 kHz)
- Measurement memory with up to 5 000 measured values per channel

- Min.-/Max. determination and limit monitoring
- Software and hardware trigger functions
- USB or RS-232C serial data transfer
- Integration with SensorTool (PC software)
- · Normalized analog outputs

➡ For more information on CoMo Torque, please refer to page 126.

Block diagram of CoMo Torque

Monitoring Assembly Processes

Integration of process monitoring into automated manufacture is a desirable goal. Force-displacement monitoring is a tried and tested approach recommended for joining and press fitting. The various benefits of electromechanical NC joining systems with integral force monitoring mean they are increasingly supplanting presses and hydraulic systems. For up to 300 kN Kistler offers a comprehensive selection of such joining systems - ranging from a compact individual module up to a complete manufacturing solution in the form of a manual workstation with integral joining station.

In addition to less environmental impact, a more favorable energy balance, compact design, ease of installation and very low-maintenance operation, it is primarily production advantages that make an electromechanical system the obvious choice for the system designer. These include flexibility, exact positioning, extremely high repeatability and accurately defined joining forces.

Even for a long idle stroke, the high speed offers a quick return stroke and hence short machine cycle. Standard availability of both tensile and compression forces leaves considerable machine design freedom. The toolholder is designed as an individually usable flange. With its electromechanical NC joining modules Kistler offers a particularly compact and precise system solution for a wide variety of force-displacement monitored press-fit and joining tasks.

Integral piezoelectric force monitoring

The electromechanical NC joining systems NCFH Type 2151B... with integral piezoelectric force sensors are particularly compact. They rely on a special AC hollow-shaft motor mounted directly around the actual spindle drive. The spindle drive connected to the ram of the press translates straight along the axis of rotation of the motor and is actuated directly by the spindle nut. This eliminates gearing and belts and the positioning and control discrepancies caused by their slippage. Their unrivalled shortness and compactness makes the NCFH modules suitable even for under-bench mounting. From an overall length of just 475 or 795 mm, they offer a stroke of 200 or 400 mm, which enables deep end points, such as bearings in half-shell gearboxes, to be reached.

O At a Glance

Electromechanical NC joining systems are synonymous with:

- Compactness
- Ease of installation
- Very low-maintenance operation

They offer

- Great versatility
- Exact positioning
- Extremely high levels of repeatability
- Accurately defined press-fitting forces

and bring the user

- Substantial energy savings
- Higher process reliability
- Improved product quality
- More cost-effective production

Plus Points of Electromechanical NC Joining Systems

- + High speeds up to 300 mm/s
- + Force control system
- + Dynamic operation
- + Integral force-displacement monitoring

Electromechanical NC joining systems from Kistler cover full range of forces from 300 kN

NC Joining Systems with Integral Force Monitoring

Overload-resistant piezoelectric force measurement in just two sizes of modules to cover the wide measuring range between 1 ... 60 kN – small for up to 10 kN and large for up to 60 kN. The force signal employed by the forcedisplacement monitoring system is used to control movement involved in highly specialized joining operations. The force control system increases the application versatility of the electromechanical NC joining system. Spring elements, for example, can be loaded to specific values or their displacement continuously monitored.

Two central lubrication points for guide and bearing ensure very low-maintenance operation. The threaded spindle drive is permanently lubricated. As the active deflection compensation system eliminates the effect of bending of the spindle and customer's assembly, the positioning accuracy is no longer influenced by the force.

Benefits of Piezoelectric Force Measurement

- Single electromechanical NC joining module covers large number of measuring ranges
- Presetting of "correct" measuring range unnecessary
- Low sensitivity to disturbance variables
- Wide variety of parts on a station makes mixed production feasible on single machine
- Overload factor of up to 15
- Cuts spare parts inventory and design costs
- Rigidity ensures highly dynamic response

Mounting station in German automotive factory with electromechanical NC joining module NCFH

Plus Points of Electromechanical NCFH Joining Systems

- + Gearing eliminated by hollow-shaft motor design
- + Hollow-shaft motor mounted directly around threaded spindle drive
- + Long spindle stroke yet compact size
- + Active deflection compensation system
- + Force control system
- + Standard holding brake
- + Highly dynamic operation
- + Ideal for under-bench mounting

➡ For more information on electromechanical NC joining systems, please refer to page 132.

O Universal Manual Workstations with NC Joining Systems

Electromechanical NC joining systems are also available in complete workstations. These universal manual workstations from Kistler can be operated on a standalone basis, or with forcedisplacement or force-time monitoring in a multistage assembly process using handling, feed and discharge systems.

Ten models up to 300 kN

The manual workstations are compact and designed for use in development, prototyping or small-scale production. Dimensions and processes can be customized. A total of 10 standard models span a very wide measuring range from 0,25 kN to 300 kN. This comprehensively covers the requirements of sectors from watchmaking to stamping truck bodies. Alternatives carefully tailored to customers' needs are also available.

Kistler supplies piezoelectric, piezoresistive, capacitive and strain gage sensors. Piezoelectric designs are particularly suitable for measurement imposing extreme requirements in terms of geometry, temperature range and dynamics. Kistler therefore relies mainly on the piezoelectric principle for measuring dynamic forces in assembly and testing.

Piezoelectric (derived from the Greek piezein, which means to squeeze or press) materials generate an electric charge when subjected to mechanical load. Pierre and Jacques Curie discovered the piezoelectric effect in 1880. As electric charges do not readily lend themselves to experimental research, piezoelectricity only gained practical significance in the middle of the 20th century. With the help of so-called electrometer amplifiers, the charge produced by piezoelectric material could then be converted into a proportional electric voltage for the very first time.

In 1950, Walter P. Kistler received a patent for the very first charge amplifier for piezoelectric signals, paving the way for exploitation of an effect that had been known for decades. The development of highly insulating materials such as Teflon[®] and Kapton[®] significantly improved the performance of these measuring systems and propelled the use of piezoelectric sensors into virtually all areas of modern technology and industry.

Most Kistler sensors rely on a quartz force link, which basically consists of thin quartz plates, disks/washers or rods. The sensor is connected to an electronic device for converting the charge signal into a voltage signal proportional to the mechanical force. The conversion is made either by means of a separate charge amplifier or an impedance converter with coupler, which is usually integrated into the sensor.

The finite insulation resistance does not permit truly static measurement with piezoelectric sensors. Nonetheless, used in combination with suitable signal conditioners, piezoelectric sensors offer excellent quasistatic measuring properties.

The Piezoelectric Effect in Detail

The term "piezoelectricity" refers to a linear electromechanical interaction between the mechanical and electrical state of anisotropic crystals that is those without a center of symmetry with lattice structure. These crystals have one or more polar axes along which the piezoelectric effect occurs as a result of an external force deforming the crystal lattice and pushing its positive and negative elements against one another. This produces an electric dipole moment.

Depending on the orientation of the axes with respect to the applied force, three different effects can be discerned:

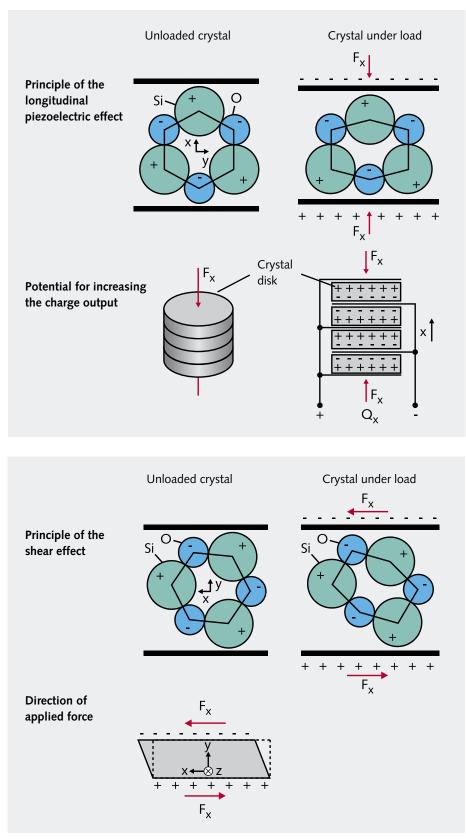
- Longitudinal
- Shear
- Transverse

Basics of Piezoelectric Measurement Technology

Longitudinal effect

A charge is developed on the surfaces to which the force is applied, where it can be measured. In the case of the longitudinal piezoelectric effect, the magnitude of the electric charge Q depends only on the applied force Fx and not on the dimensions of the crystal disks. The only way to increase this charge is to connect several disks mechanically in series and electrically in parallel. The magnitude of the output charge then becomes:

$\mathbf{Q}_{\mathsf{x}} = \mathbf{d}_{\mathsf{11}} \cdot \mathbf{F}_{\mathsf{x}} \cdot \mathbf{n}$

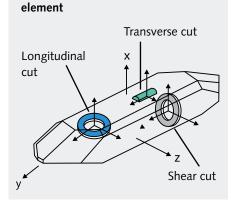

The piezoelectric coefficient d_{11} is dependent on direction and indicates the crystal's degree of force sensitivity in the direction of the corresponding axis. The position of the crystal cut therefore determines the properties and the area of application of the quartz force link. Piezoelectric elements cut to produce the longitudinal effect are sensitive to compression forces and therefore suitable for simple and sturdy sensors for measuring forces.

Shear effect

Similarly to the longitudinal effect, the piezoelectric sensitivity involved in the shear effect is independent of the size and shape of the piezoelectric element. The charge is also developed on the piezo element's loaded surfaces. In the case of a load in the x-direction applied to n elements connected mechanically in series and electrically in parallel, the charge is:

$\mathbf{Q}_{x} = \mathbf{2} \cdot \mathbf{d}_{11} \cdot \mathbf{F}_{x} \cdot \mathbf{n}$

Shear-sensitive piezo elements are used for sensors measuring shear forces, torque and strain. They are suitable for manufacturing sensors whose excellent performance is unaffected by temperature changes, as the changes in the stresses in the sensor structure caused by changes in the temperature act in a direction perpendicular to the sensitive shear axis.


d₁₁: piezoelectric coefficient (-2,3 pC/N for quartz crystals) F_x: force in x-direction n: number of crystal disks

Transverse effect

In the transverse effect, a force F_y in the direction of one of the neutral axes y produces a charge on the surfaces of the corresponding polar axis x. In contrast to the longitudinal piezoelectric effect the magnitude of this charge, which occurs on unloaded surfaces, is dependent on the geometry of the piezoelectric element. Assuming element dimensions a and b, the charge is:

$$\mathbf{Q}_{\mathbf{y}} = -\mathbf{d}_{11} \cdot \mathbf{F}_{\mathbf{y}} \cdot \mathbf{b}/\mathbf{a}$$

The transverse effect therefore makes it possible to obtain a greater charge through suitable shaping and alignment of the piezoelectric elements. Elements exhibiting this effect can be used for high-sensitivity pressure, strain and force sensors.

Possible cutting angles in the quartz

Principle of the transverse piezoelectric effect F_y F_y

Unloaded crystal

Quartz as a piezoelectric material

Piezoelectric materials for sensor elements must primarily exhibit very high mechanical strength and rigidity. Another requirement is stability of the mechanical and electrical properties across a wide temperature range and for long service periods. High sensitivity, good linearity, negligible hysteresis that is the rising and falling calibration curves are identical and high electrical insulation resistance are also advantageous.

In meeting all these requirements quartz is ideal for sensors. It can be synthesized and has other qualities beneficial for measurement. A synthetic quartz element, for example, can be used in temperatures of up to 400 °C. Quartz can be cut at different angles to exhibit sensitivity to compression or shear forces, depending on which of the three piezoelectric effects is to be used.

The quartz crystal produces a charge signal proportional to the acting force. Due to the high rigidity of the crystal, the measurement displacement is low, usually in the range of a few micrometers. The high natural frequency of the quartz element is advantageous for measuring instantaneous dynamic processes. Virtually displacement-free measurement produces minimal measuring errors when measuring slow, quasistatic phenomena.

Qv

Crystal under load

The extraordinary stability, sturdiness and compactness of quartz sensors has led to them being used not only in research and development, but also more widely for industrial production and testing.

Basics of Piezoelectric Measurement Technology

O Quartz at a Glance

Quartz has excellent properties for use as a force link:

- High permissible surface pressure of 150 N/mm² or more
- Withstands temperatures up to 300 °C
- Very high rigidity
- High linearity
- Negligible hysteresis
- Virtually constant sensitivity across wide temperature range
- · High frequency range
- · Withstands almost unlimited number of load cycles.

Direct and indirect measurement

Kistler quartz sensors are suitable for direct and indirect force measurement. For direct measurement the sensor is mounted right in the path of the force and measures the total force. This method delivers very exact measurement results, which are almost independent of the force application point. In cases where the sensor cannot be positioned directly in the path of the force, it will measure only a fraction of the total force, while the remainder passes through the structure in which it is mounted, the so-called force shunt. With indirect force measurement, strain sensors are used to indirectly measure the process force via the structural strain.

For more information on this topic, please refer to page 24 onwards.

Force Sensors, Strain Sensors and Torque Sensors

Quartz disks with piezoelectric properties can be stacked in sensors to allow the measurement of one or more force components or a torque vector. Kistler offers the following piezoelectric sensors for application in assembly and product testing:

- Single-component force sensors
- Multicomponent force sensors
- Strain sensors
- Torque sensors

Single-component force sensors

Single-component force sensors, which are available in different types, are particularly suitable for measuring forces in a specified direction. One variant is the so-called load washer, which is ideal for practical applications.

Two lightly preloaded quartz disks are sandwiched between the base plate and

Load washer

Quartz force link

forces

the cover plate in a welded case. The electrode located between the two guartz disks receives the measurement signal and transmits it to the connector. Load washers are sturdy and highly versatile in application. Their central hole allows easy integration into various structures in a variety of different configurations and preloading by means of a screw.

Preloaded between two special nuts, the washer forms what is termed a force link. The preloaded sensor is ideal for measuring compression and tensile forces, for example in rod assemblies. Preloaded sensors, which are supplied calibrated, are easy mounting for immediate use. Sensors for measuring small forces have an essentially different design. Slender quartz rods are mounted under preload between the parts used to introduce the force. Compared with the quartz rings used in load washers, the piezoelectric transverse effect in these slender quartz rods significantly increases the sensitivity.

Multicomponent force sensors

The piezoelectric measuring principle is also ideal for the manufacture of multicomponent force sensors. The design of the sensor is similar to that of a singlecomponent load washer. A pair of quartz washers cut for the longitudinal effect measures the normal component Fz, while each of two additional pairs of washers cut for the shear effect measures one of the two shear components (Fx and Fy). As shear forces can only be transmitted by means of static friction, multicomponent force sensors must always be under a sufficiently high mechanical preload when mounted.

Multicomponent force sensors are usually not used alone, but are mounted in a group of three or four of similar sensitivity in what is called a dynamometer or force plate.

For more information on single-component force sensors, please refer to page 71 onwards.

The components of the resultant force acting on a dynamometer are proportional to the algebraic sums of the corresponding components of the individual forces generated as a result of parallel arrangement. A dynamometer is therefore nothing but a multicomponent force sensor that measures the three components of the force independently of its point of application. In order to determine the three components of the resultant moment as well, the individual sensor signals need to be added

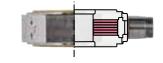
or subtracted as required. Most Kistler dynamometers and force plates are suitable for both three-component force measurement and six-component force-moment measurement.

Strain sensors

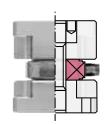
Surface strain sensor for indirect

force measurement

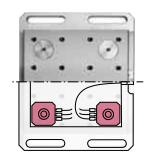
Transverse measuring pin


Longitudinal measuring pin

Strain sensors determine the process forces indirectly from the surface or structural strain. Kistler strain sensors convert strain into proportional force and generate a corresponding charge signal.


Torque sensors

The torgue vector is measured by sensors containing several shear-effect quartz disks in a circular arrangement. The shearsensitive crystal axes of the quartz disks are tangential to the circle. The external shape of torque sensors is similar to that of single-component load washers. In order to allow transmission of the shear forces by means of static friction, the quartz disks must be mounted under high mechanical preload. Torque acting on the sensor generates tangential shear stresses in the quartz disks. As all quartz disks are connected electrically in parallel, the total output signal is proportional to the torque acting on the sensor.


Torque sensors are used in applications such as quality testing of rotary switches. Stationary torque dynamometers are ideal for testing pneumatic screwdrivers.

3-component force sensor

3-component force link

Multicomponent dynamometer with four integral force sensors

For more information on multicomponent force sensors, please refer to page 88.

For more information on strain sensors, please refer to page 99.

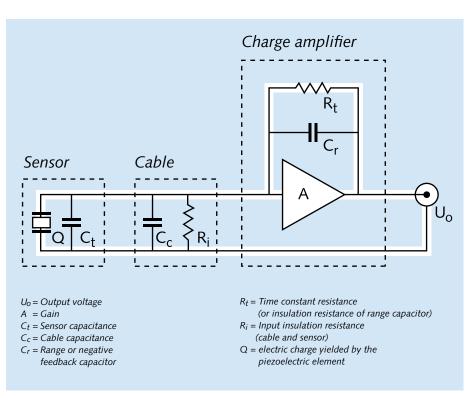
Torque sensor

Reaction toraue sensor

Example 1 For more information on torque sensors, please refer to page 104.

Basics of Piezoelectric Measurement Technology

Charge Amplifiers


Charge amplifiers convert the charge produced by a piezoelectric sensor into a proportional voltage, which is used as an input variable for monitoring and control processes. A charge amplifier basically consists of an inverting voltage amplifier with high open-loop gain and capacitive negative feedback. It has a metal oxide semiconductor field effect transistor (MOSFET) or a junction field effect transistor (JFET) at its input to create the necessary high insulation resistance and ensure a minimum of leakage current. Neglecting R_t and R_i, the resulting output voltage becomes:

If the open-loop gain is sufficiently high, the quotient 1/ACr will approach zero. The cable and sensor capacitance can therefore be neglected, leaving the output voltage dependent only on the input charge and the range capacitance.

 $U_{o} = \frac{-Q}{C_{r}}$

The amplifier acts as a charge integrator that constantly compensates for the sensor's electrical charge with a charge of equal magnitude and opposite polarity on the range capacitor. The voltage across the range capacitor is proportional to the charge generated by the sensor and therefore proportional to the acting measurand. In effect, the charge amplifier converts an electric charge input Q into an easily usable proportional output voltage U₀. As most Kistler charge amplifiers allow adjustment of sensor sensitivity and measuring range, the measured value is displayed directly in mechanical units of the measurand and the output signal is an integer multiple of the measurand.

Block diagram of a measuring chain

Time constant and drift

Two of the more important considerations in the practical use of charge amplifiers are time constant and drift. The time constant τ is defined as the discharge time of a capacitor by which 1/e (37%) of the initial value has been reached. The time constant of a charge amplifier is determined by the product of the capacitance of the range capacitor Cr and the time constant resistance Rt:

$\tau = \mathbf{R}_{t} \cdot \mathbf{C}_{r}$

Drift is defined as an undesirable change in the output signal over a long period of time that is not a function of the measurand. Even the best MOSFETs and JFETs have leakage currents (MOSFET: $I_I < 10$ fA, JFET: $I_I < 100$ fA), which are the main cause of drift. If the input insulation resistance R_i is too low, it can cause additional drift. However, as long as the input insulation resistance in the negative feedback circuit is sufficiently high (>10¹³ Ω) and no additional time constant resistor is connected in parallel, the charge amplifier will drift relatively slowly towards the negative or positive limit (MOSFET: $<\pm0.03$ pC/s, JFET: $<\pm0.3$ pC/s). This determines the potential duration of quasistatic measurement and is independent of the selected measuring range.

Frequency and time domain

The time constant affects the time domain as well as the frequency range. It determines the lower cut-off frequency $f_u = \frac{1}{2}$ $\pi\tau$ at an amplitude attenuation for sinusoidal signals of 3 dB (30 %). The longer the time constant, the better this frequency and the longer the usable measuring time. For quasistatic measurement during assembly and testing, the longest possible time constant is always selected.

Force can be measured directly in the path of the force of a split component, in the force shunt mode or indirectly as a function of strain. With direct force measurement, the entire process force passes through the sensor, while with the force shunt mode, the sensor only measures part of this force. Strain sensors measure the process force indirectly as a function of strain on the surface or inside the structure of machinery.

All elements through which part of the process force can pass in addition to the sensor form a force shunt n. Force shunts are also created by preloading elements, which are installed for direct measurement, but in most of these cases the shunt is less than 10 %. Measurement in the force shunt mode exploits this effect. The sensor is mounted so it only measures a fraction of the process force. The bulk of the process force passes through the machine structure. This approach allows measurement of forces greatly exceeding the measuring range of the sensor. As strain sensors only measure a negligibly small fraction of the process force, the force shunt created during indirect measurement is usually 99 % or more. If the force shunt is changed, calibration of the sensor must always be repeated, irrespective of the type of installation or sensor.

O Measuring Methods at a Glance

Direct measurement in the path of the force

The entire process force passes through the sensor (n < \approx 10 %).

Force shunt measurement

A fraction of the process force passes through the sensor (force shunt n \approx 10 ... 99 %).

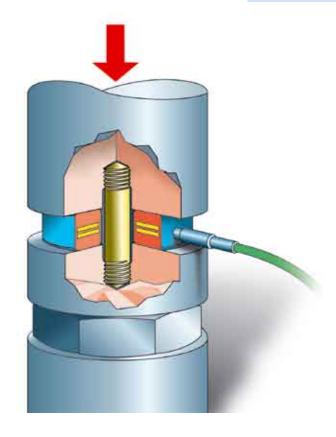
Indirect force measurement

Only a negligible part of the process force passes through the sensor (n >>99 %).

Direct Force Measurement in Path of Force

Direct force measurement necessitates splitting the component or member perpendicular to the load path to allow mounting of the calibrated force sensor. The mounted sensor therefore has to meet the component's strength and rigidity requirements. The sensors used for direct force measurement are usually calibrated and preloaded prior to mounting, as installation does not affect their force shunt. Direct force measurement with calibrated and preloaded sensors is used wherever absolute force measurement is required and calibration of the system after mounting is not necessary, such as monitoring of joining forces or measurement of small forces during product testing.

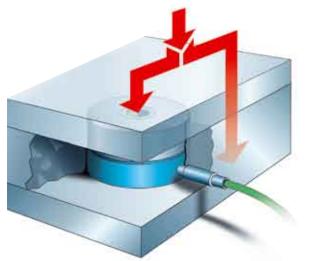
O Direct Measurement at a Glance


The sensor is mounted directly in the load path and measures the entire process force.

Advantages:

- High sensitivity
- High measuring accuracy
- · High repeatability
- · Good linearity and low hysteresis
- Wide range of preloaded, easy mounting, calibrated sensors

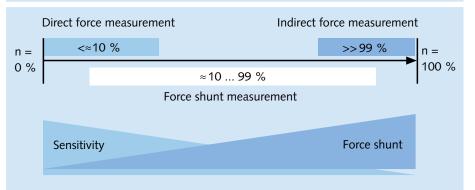
Disadvantages:


- Interference from acceleration forces when sensors are installed in moving parts
- Alteration of strength or rigidity of machine
- Possible restriction of workspace

Basics of Piezoelectric Measurement Technology

Force Shunt Measurement

Sensors are often mounted in a force shunt configuration when large forces need to be measured or the sensor cannot be mounted directly in the force path. As the sensor then only measures part of the process force and the remainder passes into the force shunt, the measuring range can usually be narrower than that required for direct measurement and hence the solution more cost effective. Another benefit of force shunt measurement is a high level of protection against overload. In order to deliver absolute values, sensors mounted in a force shunt configuration always need to be calibrated after mounting. As the sensitivity is determined by the force shunt, and this in turn depends on the point of application of the force, calibration only remains valid while the force shunt remains unchanged. Force shunt measurement is therefore the preferred method of measurement for applications with a fixed point of application, for example for



Force shunt $n [\%] = 100 \cdot F_n / F_p$

- n = Force shunt (proportion of the process force not measured by the sensor)
- n = 0 (for unmounted sensors without preloading elements)
- $F_n =$ Shunt force

- $F_p = Process force$
- S_0 = Sensitivity of the unmounted sensor
- S = Sensitivity of the mounted sensor

$$S = S_0 \cdot \left(1 - \frac{n}{100}\right)$$

monitoring presses. It should be noted that the mounting configuration and the point of force application affect not only the sensitivity of the sensor but also its linearity and hysteresis.

Force Shunt Measurement at a Glance

The sensor is mounted in the structure of the machine and most of the process force usually passes into the force shunt.

Advantages:

- Overload protection
- Cost-effective construction
- Measurement of process forces up to 100/(100-n) times the sensor's measuring range
- Good measurement accuracy under constant conditions
- High repeatability

Disadvantages:

- Measurement dependent on point of application and path of force
- On-site calibration required for measuring absolute values

Indirect Force Measurement

The deformation resulting from application of force to a structure can be measured as force-proportional strain. The process force is therefore determined indirectly from the surface or structural strain. Kistler strain sensors convert strain into proportional force and generate a corresponding charge signal. They are consequently often referred to as forcestrain sensors.

Calibration

Preloaded piezoelectric force sensors are calibrated by Kistler in the factory prior to shipment and are ready for direct force measurement with absolute values. Sensors mounted in a force shunt configuration, strain sensors or measuring pins, however, must always be calibrated after mounting (on-site) for measuring absolute values. Kistler offers a comprehensive calibration service for such cases.

The sensitivity is determined as electric charge Q (pC) per unit strain $\mu\epsilon$ (μ m/m) and is generally not calibrated, as the strain is usually negligible as a measured value. When used to determine absolute values, the sensitivity of strain measuring chains (V/kN) must always be calibrated against a force sensor as a reference. Particularly for cyclical processes it is often sufficient to monitor deviations from the force curve without any knowledge of the absolute values.

Strain sensors can be very easy mounted on a surface with just a single screw

Transverse or longitudinal measuring pins can be mounted and preloaded in specially prepared holes at a suitable point in the structure of the machine

Indirect Force Measurement at a Glance

Advantages:

- Most convenient mounting method
- · Easy retrofitting of existing machines
- Overload protection
- Cost-efficient implementation

Disadvantages:

- Measurement dependent on point of application and path of force
- On-site calibration required for measuring absolute values

Factory and On-site Calibration at a Glance

Factory and on-site calibration is only applicable to a specific, unchanging force shunt configuration.

Changes to this configuration as a result of measures such as the following invalidate the calibration:

- Mounting of sensor in the preloading arrangement or structure of machine
- Shift in the point of force application
- Changes in the force path

Basics of Strain Gage Measurement Technology

The principle of operation of the strain gage is based on the physical effect of the electrical resistance of a wire changing in proportion to any change in length caused by stretching or compression. Kistler uses this principle to measure the torque on rotating shafts and in some force sensors.

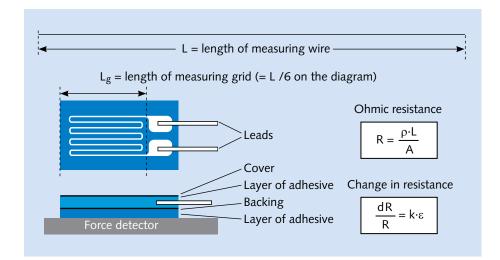
The strain gage was developed independently by two people in the USA in the 1930s. The underlying principle had already been described by William Thomson (later Lord Kelvin) as early as 1856. The first industrially manufactured strain gages designated SR-4 were produced from the 1940s onwards and very quickly found a wide range of applications.

Principle of operation

When the measuring wire undergoes a strain ε its length L, cross-sectional area A and specific resistance ρ of its material change. To obtain practical resistance values, the wire has to be very thin (diameter \approx 0,02 mm) and as long as possible. In the case of a strain gage this wire is attached to an insulating support in a meandrous pattern and provided with solderable terminals.

The wire is commonly replaced with thin (\approx 0,005 mm) metallic foil from which the pattern is etched to form a measuring grid. This produces very small such as 1x1 mm grid strain gages capable of measuring at virtually an exact point.

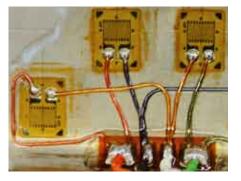
The proportionality factor k between the strain and change in resistance to be measured is called the gage factor (k). It is constant within the elastic range of the conductor. For selected materials such as constantan this factor remains constant even when the conductor is undergoing plastic deformation.


Force detector

For use in strain gage load sensors the gages are bonded onto a force detector made of a selected material that exhibits linearly elastic characteristics up to the rated load. This means that the mechanical stress σ produced by the load on the force detector is linearly related to the strain ε according to Hooke's law:

$\sigma = \mathbf{E} \cdot \boldsymbol{\varepsilon}$

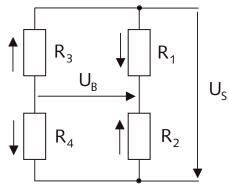
where the material constant E is called the modulus of elasticity. A further increase in load exceeds the elastic range and the force detector finally plastically deforms and is rendered unusable.


The firm connection with the detector prevents the measuring wire deforming under compression. Due to its low rigidity the strain gage does not affect the behavior of the force detector under load, and can therefore resolve strains of around 1 micron/m (10^{-6} m/m).

 $\sigma [N/m^{2}]$ σ_{B} plastic range σ_{S} "Hooke's linear law"
elastic range σ_{B} : Ultimate stress σ_{S} : Yield point ϵ_{B} : Elongation at rupture

ε_B ε [µm/m]

Strain gages measure deformation of structures in linearly elastic range



Schematic of Strain Gage

Strain gages soldered onto a structure

Wheatstone bridge

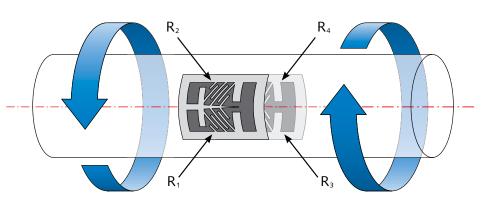
A Wheatstone bridge is generally used to convert the very small changes in resistance caused by the deformation of a force detector in the strain gages into a voltage signal capable of evaluation.

Wheatstone bridge R₁... R₄: Resistors or strain gages U₅: Supply voltage U_B: Output voltage E_B: Bridge sensitivity

This bridge consists of four resistors or strain gages. It is supplied with voltage U_S . The output voltage U_B is taken off the middle of the bridge. The sensitivity of the bridge E_B gives the relationship between output voltage with gage factor (k) and strain ε . Depending on the design, different numbers of resistors can take the form of strain gages. In the case of a full bridge all four resistors are strain gages and the value of their resistance is changed by an external factor such as torque or force.

$$\mathbf{E}_{\mathrm{B}} = \frac{\mathbf{U}_{\mathrm{B}}}{\mathbf{U}_{\mathrm{S}}} = \mathbf{k} \cdot \mathbf{\varepsilon}$$

The arrangement of the strain gages on the force detector shown in the diagram results in two gages being compressed (resistance of R_1 and R_4 reduces) and two stretched (resistance of R_3 and R_2 increases). The type of force detector and the load do not always allow strain gages to be stretched and compressed with a single loading direction. In this case either two (half bridge), or even three resistors (quarter bridge) must be replaced with fixed resistors. In this case the sensitivity of the bridge is correspondingly lower. As the temperature dependency of the bridge is a very important quality characteristic, in quarter and half bridges the fixed resistors generally also take the form of strain gages, which are geometrically very close to one another and unaltered by the load. In the event of a change in temperature the resistance values of the strain gages (for example, of R₁ and R₃) increase by the same amount, so the output voltage does not change.

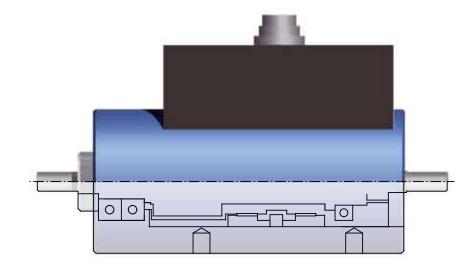

For strain gage sensors full bridges are used almost exclusively. The bridge is generally supplemented with other resistors to compensate for various factors.

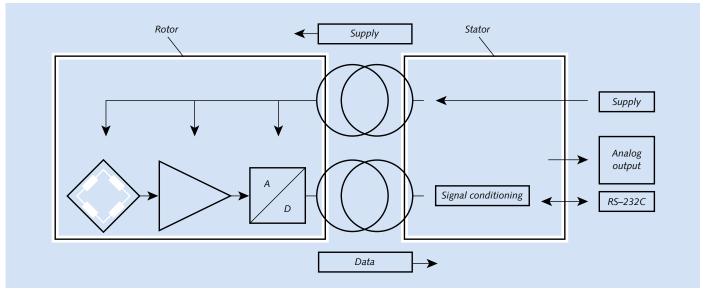
Advantages of Strain Gage Sensors

- + Allow tensile and compression measurements without having to preload measuring elements.
- + Static measurements over long period of time possible.
- + Simple static calibration with weight loading.

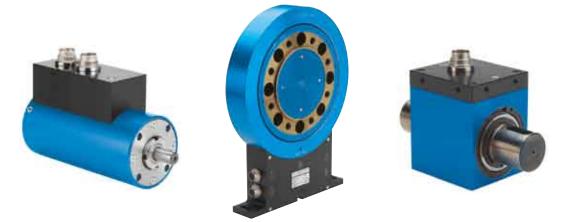
Measuring chain with strain gages

The voltages produced by the bridge are in the range of a few mV. The leads for the unamplified analog signals are kept as short as possible to minimize the effect of any electromagnetic fields. A differential amplifier generally amplifies and then digitizes the voltage. Such amplifiers have a very high input resistance and high commonmode rejection.




An applied torque twists a measuring shaft, thereby affecting the resistors of the full bridge R_1 to R_4 and producing a voltage proportional to the torque

Basics of Strain Gage Measurement Technology


Rotating torque sensors

Rotating torque sensors have two pairs of coils. The first pair transfers the power to supply the rotor, and data from stator to rotor. The digital data from the rotor is transferred to the stator by means of the other pair of coils. The electronics with the differential amplifier and the analogto-digital converter are mounted on the rotor.

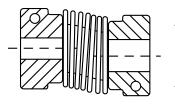
Schematic of a torque sensor for rotating shafts

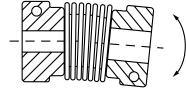
The torque on rotating shafts is measured directly in the machine's powertrain between a drive and a loading machine. Couplings are used to eliminate external factors such as transverse or axial forces and bending moments that can affect the measurement signal.

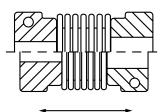
Couplings for use between shaft and sensor differ in their flexibility. Single-flexible couplings, which can only compensate for mechanical misalignment in one direction, contrast with couplings which are flexible in two (double flexible) or all directions.

Choice of coupling

The choice of coupling can be critical in achieving a high standard of measurement. For highly dynamic measurements the coupling has to be very torsionally rigid to assure exact transmission of the torque. It should also be noted that the coupling with its torsion resistance can shift the resonances of the mechanical arrangement. Questions of cost, ease of mounting and removal, and the maximum speed and torque also play an important role in this choice.

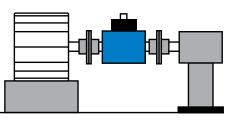

Basic principle: The mechanical arrangement and orientation of the individual components must be as accurate as possible to ensure the couplings only have to accommodate minimal differences!


Arrangement of torque measuring shafts

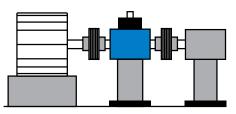

There are two arrangements of torque measuring shafts. The floating arrangement only protects the sensor from being twisted. In this case single-flexible couplings must be used. Moreover, this arrangement should only be used for torques >50 N·m and speeds < 5 000 rpm. If the base is bolted to the machine bed, double-flexible couplings should be used to accommodate parallel and angular misalignment.

Arrangement of torque measuring flange

Torque measuring flanges (for example, Type 4504A...) are generally connected directly to the drive with a flange, whereas the measurement side is provided with a double-flexible coupling.


Couplings compensate for radial (top), angular (middle) or axial misalignment (bottom)

Selection Criteria for Couplings

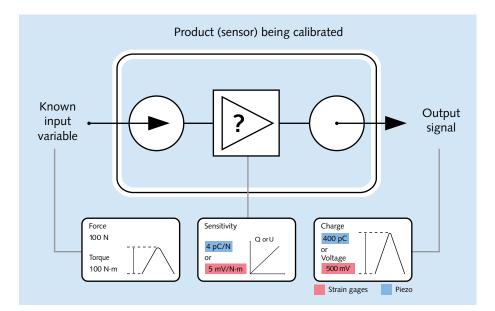

- Maximum speed
- Maximum torque
- Ease of removal
- Dynamic measurement
- Cost
- Required compensation

Torque sensor with base and two double-flexible couplings

Floating test arrangement with single-flexible couplings

Test arrangement with fixed torque sensor and double-flexible couplings

Basics of Calibration

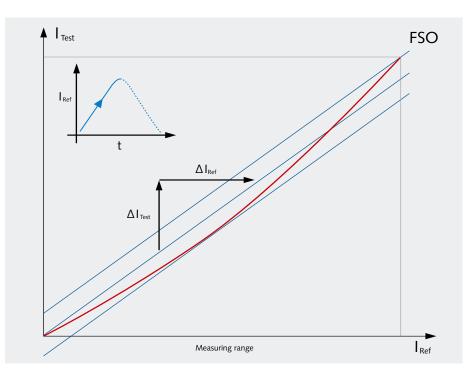

Sensors and measuring instruments must be calibrated at regular intervals, as their characteristics and hence the measurement uncertainties can change over time as a result of frequent use, aging and environmental factors. Instruments used for calibration are traceable to national standards and subject to a uniform international quality control. Calibration certificates document calibration values and conditions.

Safe and reliable measurement

Quality assurance systems and product liability laws call for systematic monitoring of all test equipment needed for measuring quality characteristics. This is the only way of ensuring measurement and test results provide a reliable and dependable benchmark for quality control.

All sensors and almost all electronic measuring devices are subject to certain measurement uncertainties. As the deviations involved can change over time, the test equipment must be calibrated at regular intervals.

Basic Principle: Calibration is the use of a defined method under specified conditions to determine the relationship between a known input variable and a measured output variable.



This involves determining the deviation of the measured value from an agreed reference value, which is also referred to as the calibration standard. The result of a calibration can either be used to assign the actual values of the measurand to the readings or for establishing correction factors for them. The required information is documented on the calibration certificate.

O Calibration at a Glance

Calibration helps ensure:

- Precise and reliable measurement
- Internationally comparable measurements
- Similar products are metrologically compatible

Sensitivity: Ratio of the change in the signal ΔI_{rest} and the change in the reference variable ΔI_{Ref} , where I represents a charge, voltage or other indicated variable

Basic Calibration Terms

Calibration

Calibration is the use of a defined method under specified conditions to determine the relationship between a known input variable and a measured output variable. The calibration standard is the reference value. For example, the calibration of scales involves placing a defined and calibrated test weight (calibration standard) on the scales to reveal deviations in the weight reading.

Calibration certificate

The calibration certificate documents all values measured during calibration and the calibration conditions.

Calibration curve

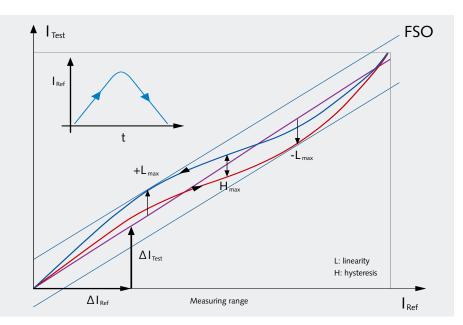
This curve shows the output variable of a sensor as a function of the input variable.

Calibration standard

The calibration standard, which is traceable to national or international "standards", is the reference value used for calibrating sensors or measuring instruments.

Characteristic value

Output signal of the strain gage sensor at rated load, reduced by the zero signal after mounting.

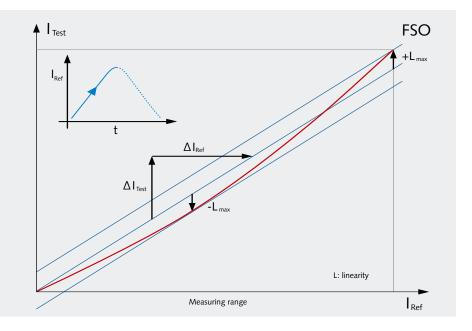

FSO

Full Scale Output or full range signal. The difference between the output signal at zero and at the end of the measuring range.

Hysteresis

Maximum difference, H_{max} , between rising load characteristic and falling load characteristic.

The relationship between the true value of the measurand and the output variable of the sensor is not exactly linear


Hysteresis: maximum difference between increasing load characteristic and decreasing load characteristic

Linearity

In practical application there is not an exactly linear (or constant) relationship between the measurand and the output variable of the sensor. The linearity L_{max} of a sensor corresponds to the maximum deviation of the ideal from the actual output signal curve in relation to the measurand within a certain measuring range. It is expressed as a percentage of the limit of the full measuring range (% FSO).

Sensitivity

Value of the change in output signal divided by the corresponding change in the input variable: $\Delta Q / \Delta I_{Ref}$ for piezoelectric sensors or $\Delta U / \Delta I_{Ref}$ in the case of strain gage sensors.

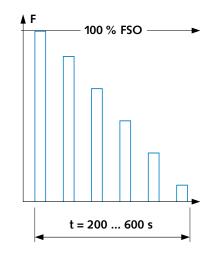
Basics of Calibration

The relationship between measurand and sensor output variable is determined by means of a simple linear regression analysis. The linearity including hysteresis indicates that the calibration curve of the loading and unloading characteristic has been used to determine the characteristic values.

Best straight line

Determination of a linear function passing through the origin to form the calibration curve, with two parallel straight lines with the same gradient and shortest distance apart enveloping all of the calibration values.

Least squares function

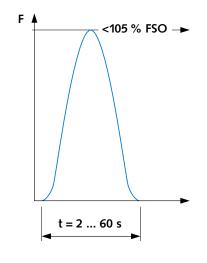

Determination of a linear function to form the calibration curve that minimizes the sum of the squares of the errors (differences between calibration curve and linear function).

Calibration Methods

During calibration, sensors are subjected to known quantities of a physical measurand such as force or torque and the corresponding values of the output variable recorded. The magnitude of this load is accurately known, as it is measured with a traceably calibrated "factory standard" at the same time. Depending on the method, sensors are calibrated either across the entire measuring range or in a partial range: • at a single point,

- stepwise at several different points or
- continuously.

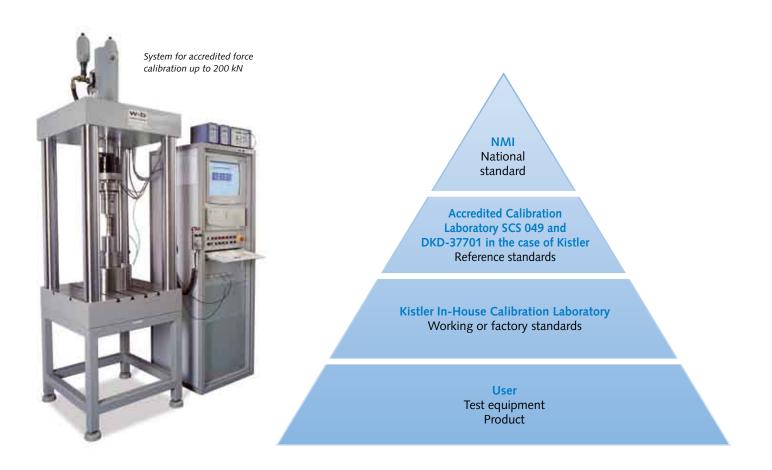
Step-by-step calibration involves the application of a defined load with or without unloading between successive increases or decreases, depending on the calibration method used. The process is halted after each increment until the measurement stabilizes.



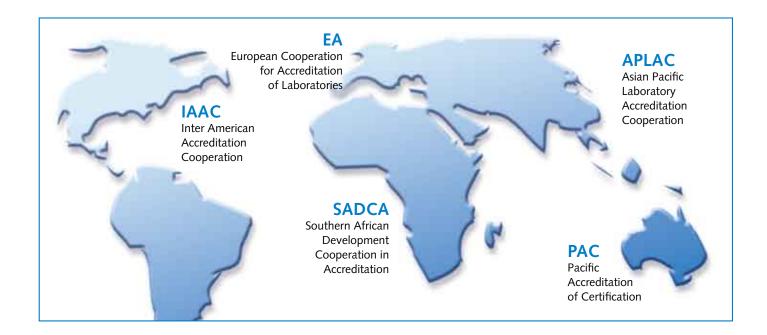
During **continuous calibration**, the load is continuously increased to the required value within a defined time and then reduced to zero within the same time. A "best straight line" passing through the origin is defined for the resultant characteristic, which is never exactly linear. The gradient of this line corresponds to the sensitivity of the sensor within the calibrated measuring range.

Linearity is determined by the deviation of the characteristic from the best line. Hysteresis corresponds to the maximum difference between rising and falling characteristic.

Most Kistler single- or multiaxial force and torque sensors are factory calibrated.



The continuous approach is the most suitable calibration method for piezoelectric sensors. Strain gage sensors are preferably calibrated step by step, torque sensors in line with the requirements of DIN 51309 standard.

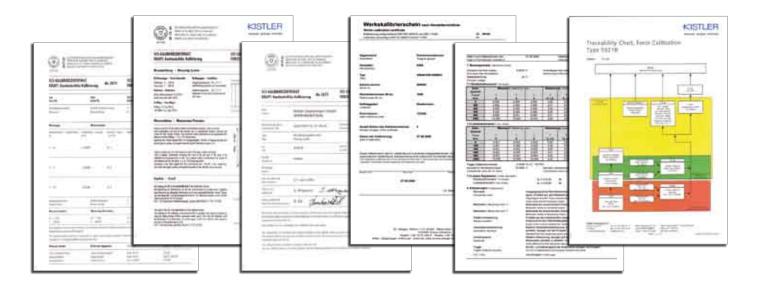

Calibration Documents

To ensure consistent quality standards worldwide, the test equipment has to meet standard quality assurance criteria. The European series of standards for quality management systems (EN 29000) – which is identical to the international ISO 9000 – demands traceability to the national measuring standards for all measuring instruments used for this purpose.

Hence the result of calibrating a measuring device or system is compared with a higher measurement standard. This results in a "calibration hierarchy" with the national measurement standard at the top.

Basics of Calibration

International standards specify the required calibration methods and measurement uncertainties.


Different institutes coordinate international cooperation on calibration. They are also responsible for the accreditation of national calibration laboratories. Documentation guidelines may differ slightly from one country to another. The following calibration documents are available for most Kistler sensors:

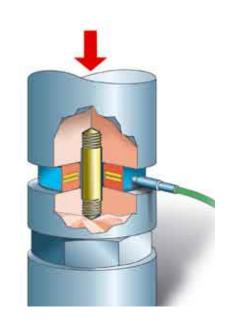
- Manufacturer's declaration
- CE declaration of conformity
- Factory certificate
- Test certificate
- Factory test certificate
- Calibration certificate
- SCS calibration certificate
- Traceability chart

O At a Glance

Kistler offers a comprehensive calibration service:

- Calibration of test equipment
- Accredited calibration laboratory (SCS 049 DKD-37701)
- Extensive functional testing
- Range of different calibration documents

Numerous mechanical, electrical and climatic parameters affect the calibration result and hence the accuracy of a measuring chain. For maximum calibration accuracy, assembly errors have to be avoided and the correct position and angle of force application achieved. Factors such as the non-linearity of various electrical parameters along the measuring chain must be considered. Last but not least, temperature and humidity also have a decisive effect.


Simultaneous calibration of three force components or three moments is one of the greatest challenges in calibrating multicomponent sensors. On Kistler's 3-component calibration system the loading is applied sequentially, with the sensor being calibrated remaining in its mounted position.

Influence of assembly

Mechanical interference due to size or positional inaccuracies significantly affects the calibration result. Force and torque sensors are often deformed in the course of assembly. Factors such as flatness, roughness, parallelism and contact surface pressure are highly important in the transmission of force or torque. Evaluation of the effect of assembly is based on a range of individual measurements taken from a typical device to be calibrated after repeated mounting in a calibration system. The characteristic value of errors caused by these operations can be used to determine the effect of assembly on the calibration result.

Non-linearity

The overall characteristic of electrical devices is usually non-linear, as linear behavior of all structural components is rare. This also applies to charge calibrators, charge amplifiers and bridge amplifiers, whose very slight non-linearity affects the calibration result. Force and torque sensors also exhibit non-linear characteristics. The linearity determined by the calibration is documented on the calibration certificate and affects evaluation of the measuring uncertainties involved in calibration. The linearity of the reference sensor is already included in the measurement uncertainty and need not be further taken into account.

Humidity

Relative humidity influences the behavior of electronic components including the capacitors used in charge amplifiers and charge calibrators. Type approval tests record and document the thermal characteristics of electric measuring instruments. This information can be used to determine the effects of variations in humidity on the calibration result.

Effective number of bits (ENOB)

Measuring cards, for example, have a measuring range of $-10 \dots 10$ V and a resolution of 16 bits. The true signal is rounded up or down to the nearest bit value, which causes a maximum rounding error of half a bit.

Best measurement capability

Comparative calibration involves the use of a reference sensor with best measurement capability, which has a documented measurement uncertainty as a result of being calibrated against a higher standard. Prior to calibration of the sensor, the charge amplifier must also be calibrated using a precision charge calibrator to ensure that the output voltage displayed by the amplifier is matched with the charge generated by the force sensor. The absolute standard method employs a calibration system with preset physical input variable. This system also has best measurement capability.

Effect of temperature

Mechanical components are subject to thermal expansion and the resistance of electronic components depends on temperature. Temperature variation during the calibration process therefore has a direct effect on the result. The effect of this parameter on the sensitivity of piezoelectric sensors and the characteristic value of strain gage sensors is analyzed as part of the type approval test. Force and torque sensors using strain gages have special compensation modules to minimize thermal changes. There is also reliable data on the thermal behavior of charge calibrators and charge amplifiers. Charge calibrators have temperature compensation that makes their thermal dependence very slight.

Accuracy Evaluation

Range errors in charge amplifiers and charge calibrators

The tolerance of electric components limits the accuracy of charge amplifiers and charge calibrators. It manifests itself as a range error, which depends on the preset measuring range and the measured value. The maximum range error is specified for each device.

Drift

The drift of a charge amplifier is a global description of the shift of the signal zero level, which is mainly due to a loss of feedback capacitor charge and leakage currents at the amplifier input. A leakage current across the insulation resistance causes an exponential decay in the feedback capacitor charge with a time constant given by the product of insulation resistance and the capacitor's capacitance. As a sufficiently high insulation resistance leads to a very high time constant, the problem of discharge only affects very long measuring periods. Given the drift characteristics of charge amplifiers are well known from extensive research, the peak value can be used to evaluate the effect of drift on the calibration result.

Instability of charge amplifiers over time

Charge amplifiers are subject to instability over time. To minimize the effect of this instability on force sensor calibration, it is advisable to calibrate in advance with a precision charge calibrator the charge amplifiers of both the reference measuring chain and the measuring chain of the device to be calibrated together with all corresponding cables, display and evaluation devices. This approach also identifies all potential influences from contacts and electrical connections within the measuring chain.

Stability of charge calibrators

Under normal circumstances, charge calibrators are calibrated at regular intervals (generally annually). Within these intervals the calibration values undergo slight changes, which are characteristic of specific devices and as such constant. The stability of charge calibrators must be considered in evaluating the calibration results.

Calibration of strain gage sensors

This requires the use of a bridge amplifier and a reference standard. Despite being balanced at the start of the calibration process the bridge amplifier is subject to a certain measurement uncertainty. The reference signal is characterized by the values shown on the calibration certificate.

Crosstalk in multiaxial sensors and sensor systems

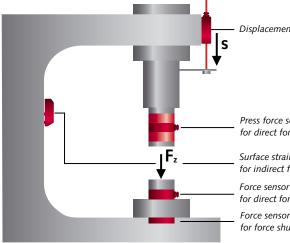
Complex sensor systems such as dynamometers are generally fitted with multicomponent sensors. With such configurations crosstalk of individual variables is observed in other measurement components. With a unidirectional force load in the direction of one axis minimal signals in the direction of the other two orthogonal axes or minimal moment will be indicated. This phenomenon affects all of the possible force and moment directions and the values involved have to be taken considered in assessing measurement uncertainties.

Ripple in rotating sensor systems

Rotating sensor systems exhibit ripple. The value of this ripple describes the change in sensitivity as a function of the rotation angle relative to the reference point. During calibration, the angular range of a full revolution is measured with a limited number of data points, which are then approximated by an optimized interpolation curve. The difference between the interpolation curve and the measured points reflects the measurement uncertainty.

Threshold

The threshold is the smallest change in the input variable that leads to a discernable change in the value of the output variable of a force or torque sensor. From experience, it is two or three times the rms value of the signal noise. This noise consists of the background noise of sensor and amplifier.


Measuring the joining force as a function of displacement is a very precise way of monitoring press fitting of bearings, sleeves or shafts into assemblies such as housings or gearboxes. The resultant force characteristic is sufficiently distinctive for assessment of the quality of both the process and the finished product. CoMo ControlMonitors are used to analyze this characteristic in order to determine whether a part is "OK" or "NOT OK".

During press fitting ControlMonitors record the interdependent measurands of joining force and displacement in pairs. This functional relationship is evaluated at the end of the cycle. The parameters for the system's monitoring and evaluation functions can be selected across a wide range of options to suit the specific requirements of the press-fitting process.

H Kistler Plus Points

Monitoring press fitting with CoMo ControlMonitors offers the following benefits:

- + Protection against joining of defective parts
- + Zero-defect output increases production efficiency
- + Protection of machine, tool and workpiece from damage
- + Process visualization and statistical process monitoring ensure optimum process control
- + Transparent and continuous process documentation allows optional benchmarking against other processes
- + Optional integration into host (PCbased) quality assurance systems

Displacement sensor Type 2101A3

Press force sensor Type 9343 for direct force measurement

Surface strain transmitter Type 9238 for indirect force measurement (alternative method) Force sensor Type 9041A for direct force measurement (alternative method) Force sensor Type 9133B for force shunt measurement

Process evaluation

To enable visualization of deviations from a reference component, a reference curve from an optimal joining process can be highlighted in blue and then stored in the CoMo ControlMonitor.

The press-fitting process is analyzed by means of evaluation objects such as thresholds, tolerance windows and end boxes. These objects can be positioned graphically with cursor keys or by keying in the corresponding coordinates on the keypad. Almost any required position, size and evaluation mode (entry and exit, passage, minimum and maximum force, etc.) can be defined.

A conforming part is signaled only if the measurement curve has passed through specified evaluation objects according to definition. An evaluation object is clearly defined by entry and exit of the curve. Failure to pass through an evaluation object correctly will result in the part being evaluated as "NOT OK". Entry and exit sides are marked in green and an arrow indicates the direction of passage. Red limits must not be exceeded. A maximum of twelve evaluation objects can be combined as required.

Force-displacement monitoring of press fitting of needle bearings into gearbox

Monitoring Press-Fitting Processes

Typical process curve of a press-fitting process with evaluation using boxes

Disturbances can be eliminated with the help of relative tolerance windows

Process monitoring

During the initial phase of the press-fitting process, the variation in the fitting force required can be monitored within strictly defined limits by means of the trapezoidal function (1+). Non-centered or incorrect mating parts can cause an excessive rise in this force. In order to protect both the tool and the machine from overload, a real-time force threshold (Y1) can also be introduced. Any breach of this threshold promptly actuates a digital output that stops the joining process immediately. Box (2+) monitors the maximum force.

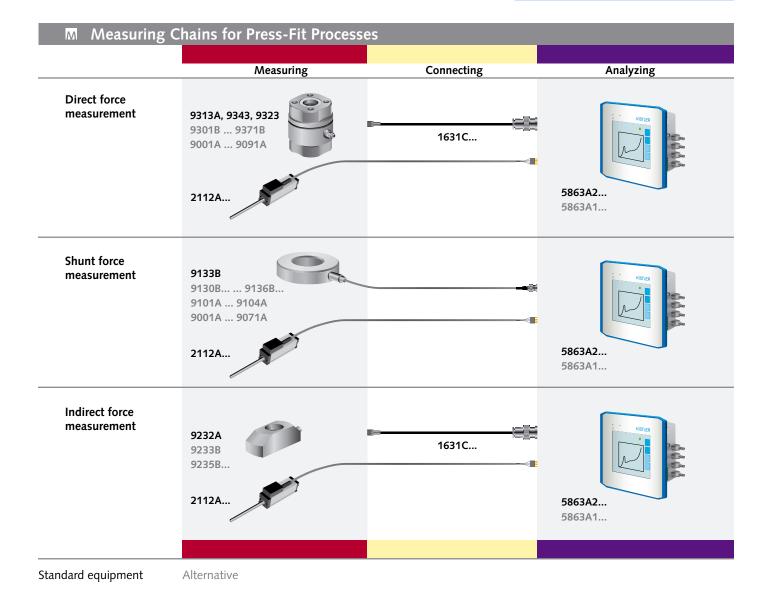
The second phase is the actual press fitting. An additional trapezoidal function (3+) ensures the joining force remains within the permissible limits. The third phase deals with the "end position" and "blocking force". The last pair of values acquired for the end position must be positioned within the end box (4+). A maximum permissible value of the blocking force can be defined within this box if required.

Superimposing any number of measurement curves (data export format for Excel) is an easy method of determining the process variation. This can then be used to program the ControlMonitor for largescale production.

Evaluation results can be affected by a range of different conflicting factors. These are usually not directly related to the signal curve to be analyzed, but are superimposed as a result of mechanical tolerances. To eliminate these factors

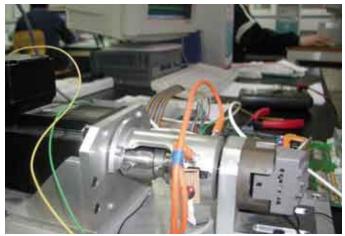
Pneumatically assisted press assembly of ball bearings in shells with good/bad decision taken by CoMo Net® ControlMonitor with external terminal

tolerance (4+) can therefore also be referenced in relation to the point at which a threshold is crossed (5+). Multichannel ControlMonitors allow, for example, various press-fit stations of a rotary indexing table to be monitored simultaneously. Rapid switching between different parameter sets during production also permits monitoring of various joining processes on a single press-fitting station.


Application sectors

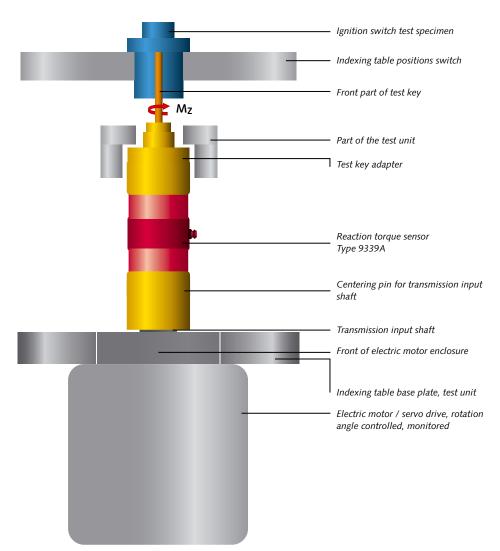
ControlMonitors for press-fitting processes are used by the automobile industry and its suppliers, in the aerospace industry and many other sectors. Typical process monitoring applications include:

- Ball bushings, bearings, pinions and shafts in gearbox assembly
- Bearings, bushes, seal rings, etc., in steering column assembly
- Bearing shafts in assembly of electric motors and injection pumps
- Bearing shells in washing machine drums


E Kistler Products

- Piezoelectric press force sensor Type 9343 for direct measurement of joining forces
- Alternative: piezoelectric SlimLine sensor Type 9133B for measuring joining forces in force shunt
- Alternative: piezoelectric strain sensor Type 9232A for indirect joining force measurement
- Standard cable Type 1631C...
- ControlMonitor CoMo View Type 5863A2....

Testing Rotary and Spring-Loaded Switches

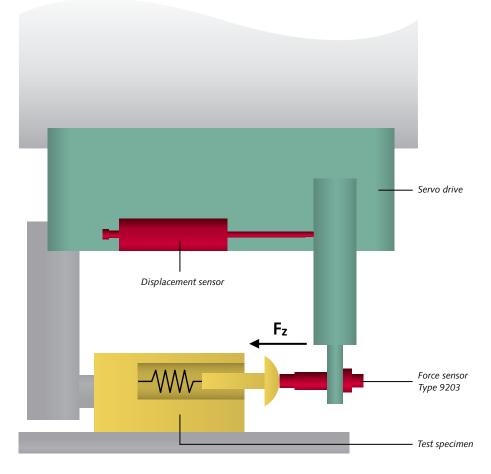

A reaction torque sensor Type 9339A tests ignition switches by measuring the torque from 1 ... 3 N·m against the spring preload during mass production (left) and in laboratory tests on an experimental set-up (right)

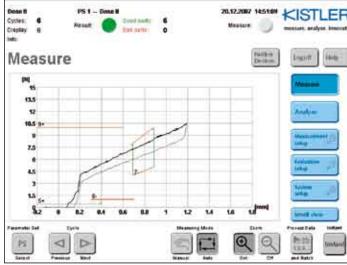
As automotive components with a direct bearing on safety, ignition switches, control pedals and locking systems leave no room for production errors. Torque sensors can determine the operating torque of components such as ignition switches in the course of actual production. ControlMonitors analyze this parameter as a function of rotation angle, check it against specified tolerances and reject defective products.

Each and every step involved in the production of components that affect safety is monitored by sensors. Suppliers to the automotive industry can guarantee flawless operation of their components by conducting in-line tests to reliably avoid failures in the customer's product.

Testing ignition switches with torque sensors

Torque sensors can test operation of assembled ignition switches on the production line. The torque measured during rotation of the spring-loaded components must lie within specified tolerances. Torque sensors can check typical ranges, for example from $1 \text{ N} \cdot \text{m}$ to $3 \text{ N} \cdot \text{m}$, within short production cycles. The sensors are positioned pneumatically before being rotated by the required angle (such as 120°) to check the torques applied to a spring-loaded ignition switch.




Testing spring-loaded switches with force fensors

The brake pedal, clutch pedal or accelerator is equipped with between four and eight spring-loaded switches, depending on the particular model of car. They activate the brake lights and generate a signal for different vehicle control systems. The resilience of these switches can be tested in special test stands, which are equipped with sensitive sensors for small forces. The test involves the displacement-controlled movement of a sensor against the test spring by means of a servo motor.

Process monitoring via machine control

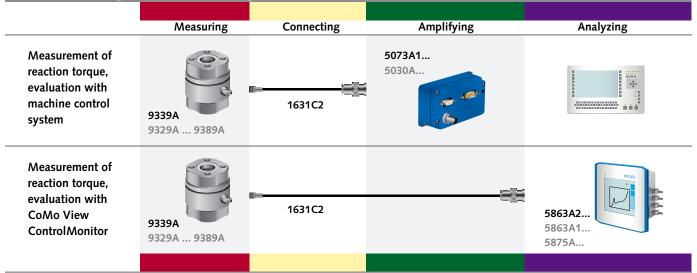
If the assembly or test unit is equipped with a control system and monitor, it can be used to visualize and analyze the force or torque curve. A charge amplifier converts the charge yielded by the sensor into a proportional electrical voltage. The machine's control system can use this voltage as an input value. As an alternative to charge amplifiers and visualization in the machine control system, the measurement results can be analyzed with ControlMonitors such as CoMo View or CoMo Net.

Testing spring-loaded switches for car brake or clutch pedals and accelerators with force sensors Type 9203 andcharge amplifier Type 5037B1211

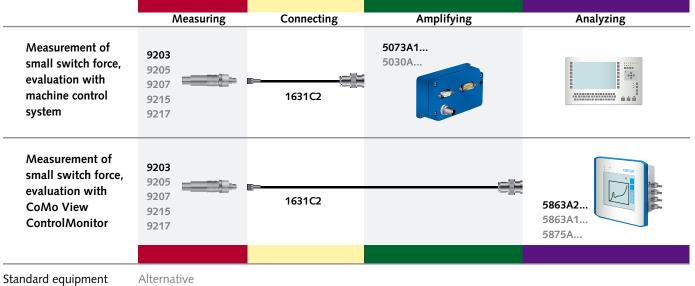
Testing Rotary and Spring-Loaded Switches

E Kistler Products

Testing rotary switches

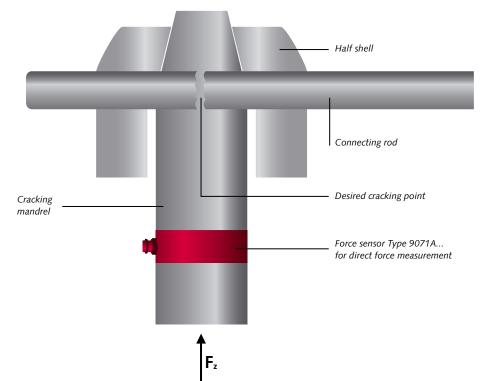

- Standard cable Type 1631C2
- High-sensitivity reaction torque sensor Type 9339A
- ICAM single-channel charge amplifier Type 5073A1...

E Kistler Products


Testing spring-loded switches

- High-sensitivity, preloaded force sensor Type 9203...
- Standard cable Type 1631C2
- ICAM single-channel charge amplifier Type 5073A1...

M Measuring Chains for Testing Rotational Switches


M Measuring Chains for Spring-Loaded Switches



Today connecting rods are manufactured as single-piece precision forgings. The big end is then cracked into two parts at a predefined point so the fracture surfaces fit together exactly. Unlike flat surfaces, the interlocking microscopic irregularities produced can also resist shear forces. During the critical phase of cracking the force-time curve can be measured, monitored and documented with the CoMo Sys* ControlMonitor.

There are bearings at both ends (small and big) of the generally i-section connecting rod. The wrist pin is inserted through the small end.

Two bolts are almost always used to hold the split big end together as the "eye" of the connecting rod. The bottom, removable part is called the bearing "cap". In Europe, cracked connecting rods have been manufactured from steel (C70) since around 1995. Initially monolithic connecting rods are notched (scribed mechanically in the case of sintered rods and laser machined for steel rods) and deliberately broken (cracked) into two parts.

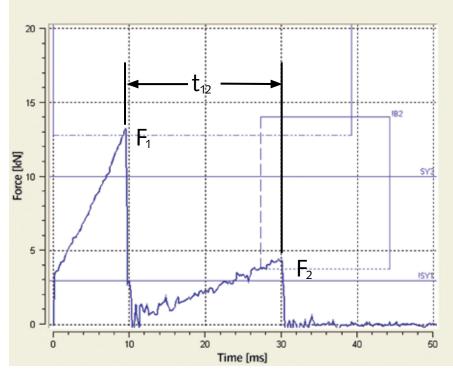
System with tapered mandrel (center) for cracking connecting rods

H Kistler Plus Points

Monitoring of cracking with CoMo monitors offers the following advantages:

- + Detection of material failure in vendor part
- + Detection of wear in the cracking system.

*Only available in Germany

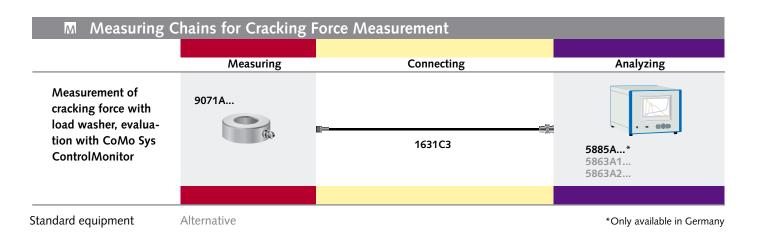

Cracking Force Measurement

Fracture surfaces have advantages in terms of strength, cost and production accuracy. As the two parts are an exact match for assembling the connecting rod, the joint is virtually invisible afterwards. The connecting rod and its bearing cap must always remain together and cannot be replaced individually.

Process monitoring

The entire cracking process only takes milliseconds. The two fractures can be simultaneous or the second can occur after a slight delay. The force-time exhibits a virtually linear rise in force to F_1 until the first fracture occurs. It then falls to zero and climbs again virtually linearly to the value F_2 . After the second fracture the force falls to zero again. The CoMo Sys* ControlMonitor is used to monitor and document for quality assurance maximum force values F_1 and F_2 , their variation with time and delay t_{12} between them.

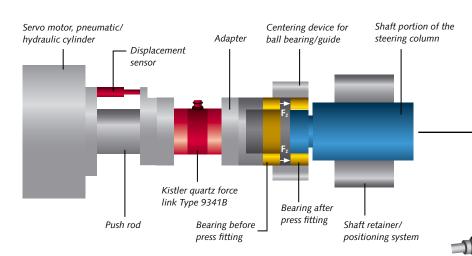
Last but not least, force monitoring makes cracking technology transparent and controllable. The automobile industry also uses it in a similar way for crankshaft bearings in engine blocks.

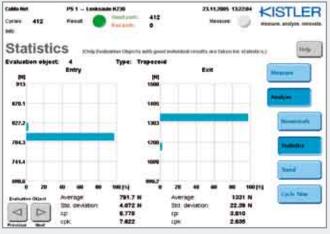


CoMo Sys[®] monitors force-time curve and delay (t_{12}) between peaks (F₁ and F₂) in fracture force

Machines with several cracking mandrels, each installed with a force sensor, are often used in parallel in manufacturing. The multichannel version of the CoMo Sys* is ideal for this process monitoring.

E Kistler Products


- Piezoelectric force sensor Type 9071A...
- Cable Type 1631C3
- CoMo Sys ControlMonitor Type 5885A...


Car steering columns must meet extremely stringent safety requirements. Assembly of their components (particularly bearings) has to be monitored and documented. Force-displacement monitoring ensures reliable separation of good and bad parts and documentation of each joining operation in compliance with manufacturing guidelines for components affecting safety. Column bearings come into this category. They are usually pressed onto a shaft so they are held by friction. Forcedisplacement monitoring is conventionally employed as a means of quality control of such press-fitting operations. Special quartz force links calibrated for tensile and compressive forces can be readily integrated into the push rod of the press. These links are ideal for measuring the sometimes very high joining forces. The force-displacement curve recorded using the links together with an additional displacement sensor and a ControlMonitor can be used to assess the quality of the press-fit connection.

Process monitoring

Different evaluation strategies featuring thresholds, boxes, gradients and special end positions can be used for monitoring mounting of the steering column's bearing with ControlMonitors such as CoMo View and CoMo Net.

Monitoring of joining force and bearing position: box 2 monitors assembly force while boxes 3 and 4 and gradient 7 monitor joining force and box 5 end position

Histogram of entry and exit of evaluation object 4 with important statistics

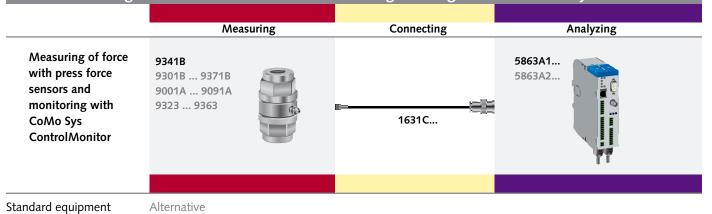
Monitoring Assembly of Steering Columns

Colina He Cycline Cicphay: Intik	412 412	PS1 - La Revult	-	kzan haoduseta 412 haduseta e	Heature		Cutto turi Contes 412 Inte	PS1 - Lankabel Result	Bad calls	412 0		12005 132055 feature	KISTLER
	18am	2481 0.000 9.026 -5.1296-3	*	at. 5425 mm at 512653 mm	Freeres when 2	italy.	Trends Evaluation object	4 Britry	Type: Tra	94 1508	Đ	r.	Andrew Contraction
	Bax Datty Lat		OK.	2.910 mm	2.511 data	- Anner	870.1			1405			
9	Biox Entry Just		05	2.610 mm	712.6 M		110.0						-
	Tropecabl		KOK.	798.5.8	1334 M	Abaran ab	827.2			1383		111	Discourse of the
5	May Postfune	1	IOK	0.800 mm+	210110								
2	Gradient	5	ON	962.2 Witness		Number .	794.3	Hards to the	•1 - 1	1200		-	Mathday
							743,4			1000			Test
							500.6 N	15 20 25	30	M4.2			
						A paint former		Process value:	788.1 N	50 1	nocess value:	1334 1	Care Bran

Active evaluation objects with result and process values for each cycle

Exhibited by entry and exit values of evaluation object 4

These strategies allow reliable identification of good and bad parts to ensure cars are only built with properly assem-bled steering columns. The force-displacement curve documented for each individual assembly process ensures the full traceability that has become a universal requirement. The statistical function of either CoMo Net or CoMo View documents each and every operation involved in the joining of components and assemblies affecting safety. Fast export of measurement curves and/or process data allows all relevant data to be saved on a server. More transparent processes help optimize cycle times and increase output. As such assembly lines output up to two million units per year, process monitoring is an important factor in their cost-effectiveness.


+ Kistler Benefits

- The compactness of piezoelectric sensors means they are more readily integrated into the existing machine environment than strain gage sensors.
- The calibrated measuring ranges, freedom from wear, long-term stability and robustness of piezoelectric sensors ensures maximum 24/7 reliability over the approximately 7-year production life cycle of a car model.
- The wide measuring range of piezoelectric sensors makes them very versatile – even in the face of changing parameters and/or operating conditions.
- Fast data export facilitates process analysis, process configuration and documentation of statistics for quality management.

E Kistler Products

- Quartz force link Type 9341B...
- Standard cable Type 1631C...
- CoMo Net ControlMonitor Type 5863A1...

Measuring Chain for Force Measurement during Steering Column Assembly

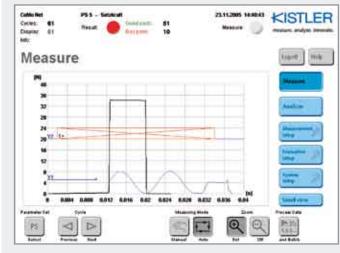
www.kistler.com

During fully automated insertion of components into printed circuit boards (PCBs), the leads or pins of the electronic components have to pass through the matching holes with a minimum of friction. Mounted in the appropriate position on the assembly station, force sensors can measure these insertion forces, and ControlMonitors are used to monitor the process as a whole. If a permissible insertion force is exceeded, the assembly process is stopped extremely quickly. This avoids post-production costs and ruined circuit boards.

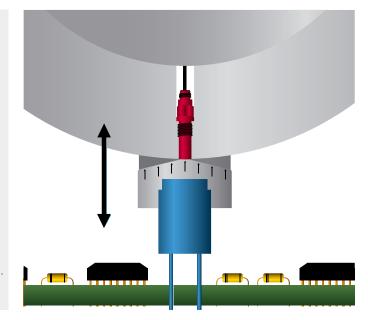
By the time conventional components such as capacitors, resistors, diodes, transformers, coils, filters or multiway connectors are being inserted, the boards have already passed though a whole series of production stages. As these include placement and soldering of surface mounted devices (SMDs), the printed-board assemblies (PBAs) have already acquired significant value. Reliable protection during subsequent component insertion is particularly important.

During fully automated in-line assembly, the component leads must be inserted through the matching holes with virtually no friction. Care must be taken to avoid any misaligned leads being bent or snapped on the surface of the board, which with damaged circuitry would have to be repaired or even scrapped. Operators of insertion machines can rely on high-precision line technology. However, the machines also need to compensate for variations in component geometry and dimensional discrepancies caused by earlier production steps. Thus they check the force applied for each insertion.

Controlling setting force with highsensitivity sensor


The heads of the machines are equipped with several grippers for picking up the components from the automated delivery stations and positioning them on the printed circuit board.

During component insertion the active gripper arrangement allows measurement of the involved force with a central sensor. As all grippers rotate around a fixed part of the insertion head, the measured force would be exactly zero under the ideal conditions of no lead friction. Because any forces actually encountered are very small, use of a high-sensitivity piezoelectric sensor such as Type 9215 or a force-calibrated M5 strain sensor Type 9247A is recommended.


H Kistler Benefits

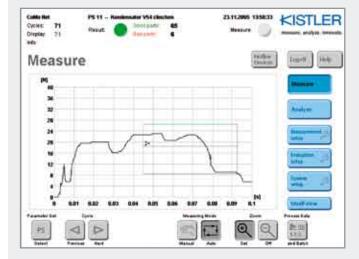
- High-sensitivity, extremely high resolution, compact piezoelectric force sensor for small forces
- Easy integration of CoMo operation and control into existing machine control system saves hardware and engineering costs
- CoMo Net allows easy integration of monitoring processes into company LANs
- Response time of a few milliseconds
- Fast program changeover

The force measured during insertion only increases if any leads are forced onto the surface of the circuit board adjacent to the holes rather than being inserted through the actual holes, or the through-hole in the board is non existent or too small in diameter to allow passage. CoMo Net monitors a specified force threshold (Y2). If the force remains below this threshold, the insertion procedure is assessed as "OK". If it exceeds it the CoMo immediately sends a signal to one of the digital outputs. This real-time signal is registered by the machine's control system, which immediately stops the insertion process. Box 4+ is used to decide whether each

The blue curve is the reference curve for an "OK" insertion, black that for "Not OK". If the insertion force remains below the specified threshold the operation is assessed as "OK"

Monitoring Insertion Force to Protect PCBs

part is good or bad. If the signal enters the box the CoMo will send a "not OK" message. The machine operator then has to decide whether an equivalent component is to be inserted into the PCB or the board reworked.

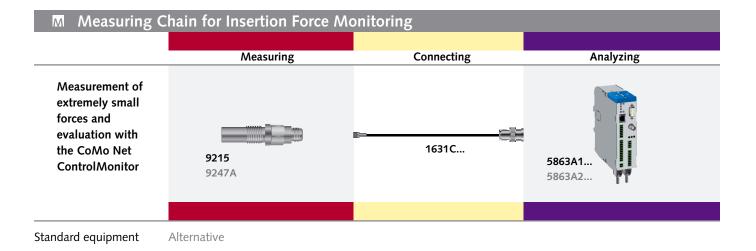

Insertion check

As during perfect insertion the applied force will not encounter any resistance, the system monitoring the insertion force cannot detect whether a component is missing. Successful insertion is therefore checked separately. This involves clinching the component leads on the underside of the board with a defined force. This prevents components being dislodged during subsequent feeding of the PBA. Monitoring of the clinching force also provides aproof of the presence of the inserted component.

Monitoring with CoMo Net and visual-

ization using machine's control system Insertion machines are equipped with their own control system, with PC and touch screen. This means a networkable CoMo Net ControlMonitor, which can be integrated into machinery and corporate LANs, is ideal for monitoring insertion and clinching forces. Insertion is monitored through force-time analysis. CoMo graphics, such as the curve of the measured clinching or insertion force, are displayed on the machine's monitor. Control signals are linked directly to the PLC via digital I/ Os. A "Max-Min box" superimposed on the second half of the force curve is used to evaluate clinching.

Some manufacturers of insertion machines already offer insertion force and detailed monitoring as standard.


If the clinching force does not exit the confines of the evaluation box, the existence of an assembly component is confirmed

O Kistler Services

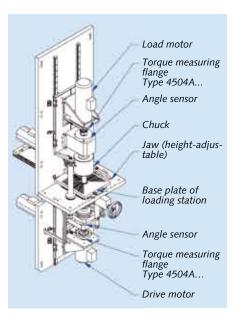
- Support and engineering ensure optimal customization of Kistler sensors
- Support for process optimization and cycle time reduction

E Kistler Products

- Sensor Type 9215 for small forces
- Standard cable Type 1631C...
- CoMo Net ControlMonitor Type 5863A1...

Low-play planetary gearboxes are subjected to 100 % final production testing before shipping to the customer. The breakaway torque, no-load torque, operating noise, axial runout, radial runout and gearbox backlash are determined in an automated sequence. The key components of the gearbox test stand are compact torque measuring flanges from Kistler.

Two torque measuring flanges Type 4504A... with no mechanical bearings and signals transmitted without contact measure the dynamic torques on the input shaft and the output shaft, which are represented by an voltage output. The sensors are configured with the aid of the digital interface.

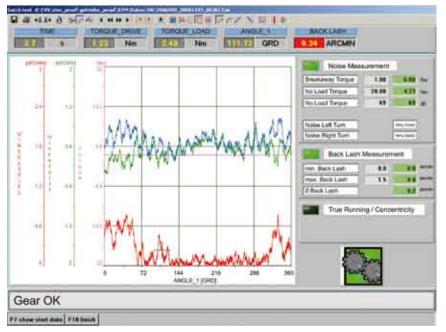

Output drive torque control allows continuous measurement and evaluation of gearbox play under constant conditions, with high-resolution angle sensors transmitting the current input and output drive positions in the microsecond range. The gearbox play is measured to a system accuracy of 10".

Optimized test procedure ensures short cycle times

To start with the model of gearbox is identified with a barcode reader. The loading station with mounted gearbox is retracted into the test chamber, where jaws clamp the gearbox in position. The bottom carriage is then raised and the motor shaft adapter coupled to the gearbox. The breakaway torque, no-load torque and operating noise are measured. Next, the top carriage is lowered and the load motor coupled to the gearbox to measure its play. The brake motor is then uncoupled and raised. The test stand measures the radial and axial runout. After the drive motor has been uncoupled and lowered the loading station is taken out of the stand to allow removal of the gearbox.

Test stand for planetary gearboxes

The dynamically recorded measurands are visualized, evaluated and saved in a process database online. The high-precision measurement results also allow conclusions to be drawn about gearbox optimization and development. The optimized test procedure shortens cycle times to boost productivity.


Measurement assembly

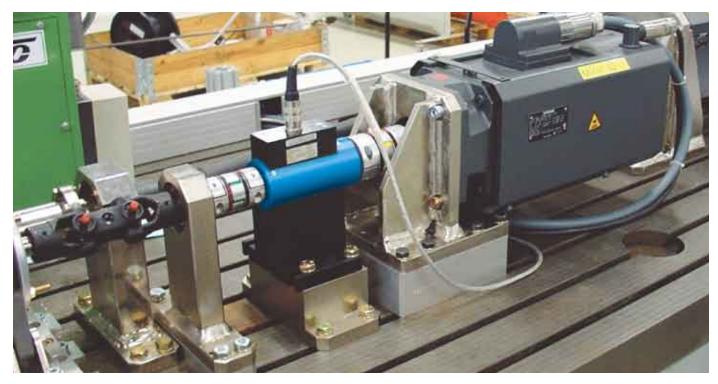
Drivetrain with torque measuring flange Type 4504A... and angle sensor

Fully Automated 100 % Testing of Gearboxes

Measuring C	hain for Automate	d Testing of Gearboxes	
	Measuring	Connecting	Analyzing
Testing of characteristic torques and evaluation with test stand control system	4504A	See page 111 or data sheet for cables matching sensor	

Measurement results transferred to screen of test stand control system

Kistler Services


- Engineering
- Programming
- Detailed training
- Introductory training
- Calibration
- Maintenance agreements
- Hotline
- Customer service

H Kistler Benefits

- + Very compact torque measuring flange
- + Configurable via the RS-232C interface

E Kistler Products

- Torque measuring flange Type 4504A...
- Evaluation with customized software

The drive unit drives the gearbox (extreme right) via the torque sensor Type 4503A... . Via an output drive the gearbox is loaded by a second motor unit to simulate flap movement. (photo: Liebherr Aerospace).

Landing flaps are extensions to the trailing edges of aircraft wings. During the approach they increase lift to enable the flying speed to be reduced for landing. To meet stringent quality requirements, the service life and wear characteristics of special gearboxes with output drive in flap control components must be tested. Realistic flap movements are simulated on a wear test stand with drive and load motors applying specific load profiles to the gearbox. Liebherr Aerospace is a supplier of systems for business jets, feeder aircraft, wide-bodied civil aircraft, helicopters and military aircraft. These flight control, actuation and hydraulic systems include aircraft landing flaps, which require extensive realistic load

tests. Special gearboxes with output drive for flat control components are checked out on a wear test stand using motors to apply specific load profiles.

To enable reliability assessment the input torque is measured as a function of speed with a Kistler sensor Type 4503A... . Incorporation of the speed measuring system into the sensor allows the drivetrain to be clearly and compactly arranged in the test bay.

CoMo Torque Type 4700A... evaluation instrument can be used to display the characteristic measurands provided by the bay. It supplies the torque measuring sensor with power and receives the measurands of torque and speed returned by the sensor. Mechanical power is calculated and displayed by the evaluation unit.

CoMo Torque Type 4700A... mounted in test cabinet to display torque, speed and mechanical input power of gearbox (photo: Liebherr Aerospace).

Gearbox Endurance Test for Landing Flap Systems

H Kistler Benefits

Туре 4503А...

- + Compact torque measuring system with integral speed / rotation angle measurement
- + Robust, wear-free design with noncontact digital data transmission between rotor and stator
- + Low maintenance costs
- + Available as single- or dual-range sensor
- + Sensor signal supplied as voltage, frequency or digital signal

All of the measured and calculated

variables are provided by CoMo Torque

(which converts speed into a tachometer

voltage signal) as analog voltage values,

which are passed on to the measurement

acquisition system based on a PC. Options

CoMo Torque Type 4700A...

- + Conversion of any measurands into output voltage signals
- + Amplification and conditioning of small signal amplitudes
- + Displaying of torque, speed / rotation angle and mechanical power
- + Monitoring of measurands with adjustable limits
- + Full remote control via serial interface possible

include scaling of the input torque and

output of the mechanical power as an

define all parameters of the evaluation

analog variable. The test bay operator can

instrument on-site or by remote control via

O Kistler Services

- Engineering of sensor geometries, OEM solutions
- Training in Kistler premises or on site
- Introductory training and set-up assistance
- Periodic calibration to German Calibration Service (DKD) accreditation and other official requirements
- Expert, focused hotline
- Prompt, flexible customer service

E Kistler Products

- Torque sensor Type 4503A...
- Cable for analog signals Type KSM186420-5
- CoMo Torque Type 4700A... evaluation instrument

M Measuring Chain for Gearbox Endurance Test for Landing Flap Systems

a serial interface.

	Measuring	Connecting	Analyzing
Measuring of torques and evaluation with CoMo Torque ControlMonitor	4503A	See page 110 or data sheet for cables matching sensor	4700A

Various types of suspension struts for stabilizing the tracking of vehicles are used with different elastomer bushings to improve handling. Two electromechanical NC joining modules with forcedisplacement monitoring have replaced four separate hydraulic machines for this purpose on a manufacturing island. This cost-effective, space-saving investment with 20 alternative programs offers low energy consumption and maintenance costs, and a very rapid return on capital expenditure.

The manufacturing island of a leading carmaker is a flexible assembly unit for various struts used for ride improvement in the axle area. The elastomer bushings improve handling as well as deadening noise and vibration.

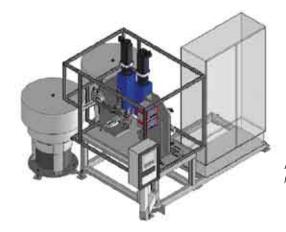
The manufacturing island can handle various strut types and lengths with different designs of elastomer bushings. The main reason for awarding the contract for the system to a particular machine manufacturer was the advantages of the electromechanical joining systems from Kistler. The manufacturing island accommodates two electromechanical NC joining systems with integral force sensor for joining forces of up to 60 kN and a maximum stroke of 200 mm. The DMF-P A300 NCF Type 4734A... force-displacement measuring system monitors the process, the PLC of the system is a Siemens S7-315 with Profibus and a SINUMERIK operator panel front OP 012 and PCU 50.

Two NC joining systems replace four hydraulic units

The versatility of the NC joining systems enabled the automobile manufacturer to replace four individual machines with just two NC joining systems. By contrast with the hydraulic unit, the joining modules can very easily reach different end points. The additional cost of the electromechanical joining systems over separate machines with hydraulic joining units was recovered in no time at all. The NC joining systems are also more environmentally acceptable and significantly quieter than their hydraulic counterparts.

20 programs on single system

The system can be used for future struts as they evolve. The as-supplied configuration has four programs to replace four separate machines. The plan is to map up to 20 different programs onto a single system. The flexibility of the system makes it possible to cut costs by making more efficient use of the shop floor and reducing the number of personnel required.


Lower installation, energy and maintenance costs

The fast payback period of the higher investment involved in NC joining systems is the result of: lower energy consumption, reduced maintenance costs due to elimination of oil and filter changes, the compact arrangement without hydraulic units and measures to contain oil leaks, and costeffective installation without pipework. **Focus on automated production sequence** The cycle time for each strut is just 10 seconds:

- 1. The struts are placed on a timed conveyor belt by hand.
- 2. Two sorting hoppers automatically feed the elastomer bushings to the press-fit units.
- 3. Both bushings are automatically lubricated prior to the joining operation.
- 4. The Kistler systems press two bushings into a strut simultaneously with a positioning accuracy of ±0,5 mm.

The standardly furnished I-P.M. interface of the force-displacement measuring system DMF-P A300 NCF ensures easy connection to an existing system employing this format. I-P.M. is used for documentation, detailed analysis and statistical process and measurement data. The system is installed on a server for accessing with a web browser. Measurement signatures can be visualized and archived for any preset period of time. The system can also automatically warn production, quality assurance or maintenance managers of any exceeded limits. Sets of limits can be monitored with the module for changing parameters. The following statistical analysis functions are available:

- EWMA
- Shewart
- Frequency curve
- Q-DAS transfer format (qs-stat)

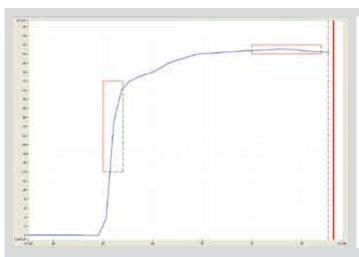
Manufacturing island with two electromechanical NC joining systems and parts fed by two sorting hoppers

Fast, Flexible and Firm Joining

H Kistler Benefits

- + Very compact arrangement
- + Very compact and no oil maintenance
- + Different end points accessible without modifications
- + Greater versatility
- + Significantly quieter
- + Low energy consumption
- + Maintenance costs cut by elimination of oil and filter changes
- + Short payback period

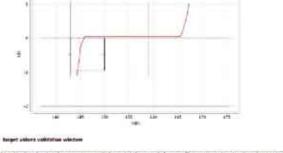
E Kistler Products


- Electromechanical NC joining system NCFN Type 2153A0602003HG
- NCFN 60/100 kN IndraDrive 70 A PB Type KSM031634
- NCF SSI displacement IndraDrive Type KSM301750-5
- NCFN(S) strain gage force cable Type KSM206000-5
- Force-displacement measuring system DMF-P A300 NCF Type 4734A...
- TraceControl Software for forcedisplacement measuring systems Type 4735A

Kistler Services

- Support with start up
- Parameter configuration

Two electromechanical NC joining systems press elastomer bushings into struts



Typical force-displacement curve in joining process, visualized by Kistler TraceCon- I-P.M. used for documentation as well as extended analysis and statistics of trol (Freeware)

1. Window type 3 for monitoring increase in force

2. Window/Box type 1 for monitoring the min/max force during joining

3. Window/Box 0 for monitoring the end point

name (see	whiches fight		8-00EA	P	F-man-2	100.0	1046-2	window direction.	T MHOD	\$10105
ALC: N		- 140	178			_	P	. 140	- 40000	- 16
10001		1.104	185	-2.01		-1.00		1475	4167176	10.
and a S	. e			4			- U.B.		- Armalder	
construction of			- 4			-	- 4	144	1.04	- 89
+100+5	- 8		- 6			1		1.00		- 909
-				. 1						PON-
amilt # T			π.	- 1			(1.14	1.04	MON
				- 2			1.10			- 81.0

process and measurement data.

Measuring Chain for Joining of Elastomer Bushings Μ Measuring Connecting Analyzing Indirect measurement 2153A... 4734A... of joining force and force-displacement monitoring in the See page 136 or data sheet for cables system matching NC joining system

NC joining system NCFH used to press-fit bearings on Compactness of hollow-shaft motor allows 795 mm long NC joining module NCFH to offer 400 mm stroke production line

Very accurate positioning and repeatability is vital when pressing small bearings into a housing or delicate gears into miniature gearing. Electromechanical NC joining systems with integral forcedisplacement monitoring combine joining and quality assurance in a single operation; their piezoelectric force sensors allow highly dynamic monitoring of minute joining forces. The electromechanical NC joining systems NCFH Type 2151B... with integral piezoelectric force sensors have a special AC hollow-shaft motor mounted on the actual spindle. The spindle connected to the ram of the press translates along the axis of rotation of the motor when actuated directly by the spindle nut. This arrangement avoids belts and gearing and eliminates positioning and control discrepancies caused by slippage.

Their unrivalled shortness and compactness makes the NCFH modules suitable for even under-bench mounting. From an overall length of only about 475 or 795 mm, they generate a stroke of 200 or 400 mm, which allows deep end points, such as bearings in half-shell gearboxes, to be reached.

Benefits of Kistler NC Joining System NCFH

- + Gearing eliminated by hollow-shaft motor design
- + Hollow-shaft motor mounted directly on threaded spindle drive
- + Long spindle stroke despite compact dimensions
- + Active compression compensation system
- + Force control system
- + Standard holding brake
- + Highly responsive operation
- + Ideal for under-bench mounting

Press Fitting with Extremely Small Forces

monitoring

NC joining system NCFT pressing shaft-mounted gears into clock movement with force-displacement

Indexing table in industrial clock manufacture with feed station for press fitting gears

NC joining systems even for miniscule forces

With its integral piezoelectric force sensor and nominal joining force of 1 kN the electromechanical NC joining system NCFT Type 2157A... is suitable for both automated precision manufacture and standalone workstations required to offer high sensitivity and dynamics in a very compact package.

Its extremely high repeatability of 0,005 mm and speed of up to 300 mm/s are designed to accommodate fast, highly-precise cycles with short return strokes. The slender profile allows close spacing of neighboring stations on an assembly line. The measuring ranges of 0,25 kN, 0,5 kN and 1 kN meet even the most stringent requirements, as in industrial clockmaking. The NC joining system consists of the NC joining module NCFT Type 2157A..., the force-displacement measuring system DMF-P A300 NCF Type 4734A... and the IndraDrive servo controller. The electronics in this controller monitor the operating range of the threaded spindle drive. The powerful and versatile force-displacement monitoring system displays the force curve and uses fully programmable tolerance windows to continuously evaluate all phases of the assembly process.

Advantages of Kistler NC Joining System NCFT

- + Compactness
- + Particularly slender profile
- + Low joining forces for precision manufacture
- + Measuring ranges of 0,25, 0,5 and 1 kN
- + Repeatability of 0,005 mm
- + Highly responsive operation
- + Extremely high speed of up to 300 mm/s

Other Force and Torque Applications in Manufacturing, Assembly and Testing

Assembly and product testing are just two of the many industrial applications in which force, torque or strain measurement plays a major role. Kistler sensors also measure highly dynamic production processes involved in operations such as primary forming, re-shaping, cutting and machining, and in all joining procedures such as punching and welding. The sensors help monitor, document and ultimately improve the quality of the manufactured product.

Used for measuring and monitoring, piezoelectric sensors offer numerous advantages. To mention just one their wide measuring range generally protects them against overload. They are ideal for measuring dynamic and cyclical processes and have a virtually unlimited service life.

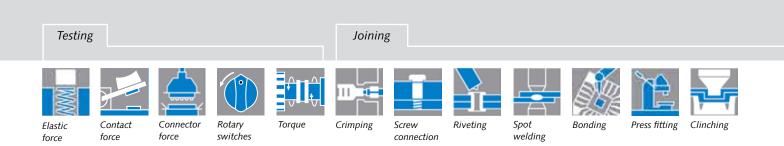
Only piezoelectric measuring chains tailored to the application will deliver optimal results. Their sensors, cables, charge amplifiers and display and evaluation equipment can be used for monitoring, testing, closed-loop control and open-loop control of a wide variety of manufacturing processes.

The practical value of sensors used to monitor assembly processes and test products is discussed in detail in this catalog. However, their ability to measure force, torque, pressure and acceleration is also useful in other areas of industrial production.

Joining

During joining processes in general and longitudinal presswork, clinching and bonding to produce permanently joined parts in particular, deviations within large-scale production processes are best monitored by measuring the applied force. Process monitoring allows documentation of the joining process, an objective means of detecting good and bad parts, and continuous checking of the machine's condition.

Measuring the force during crimping of the ends of cables ensures reliable electrical contacts for consistently highquality volume production. Measuring the electrode clamping force during resistance welding optimizes joint quality in applications such as vehicle body manufacture.


Measuring the strain proportional to the force in the structures of clinching tools, riveting tools and wobble-riveting ma-

chines ensures reliable monitoring of these widely used joining methods.

Primary forming

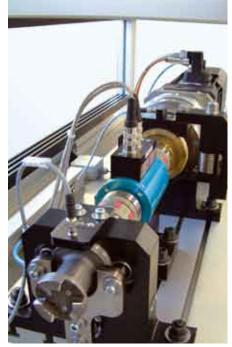
The molding of powder or melt into a solid body is referred to as primary forming. Application of the correct amount of force and pressure plays a key role in this process. Versatile and reliable force measurement technology optimizes the shape, density and hardness of parts produced by powder compaction, such as tablets, pellets or sintered metals, and of metal die castings. The main benefit of process force monitoring is the production of finished parts within a specified tolerance range.

Re-shaping

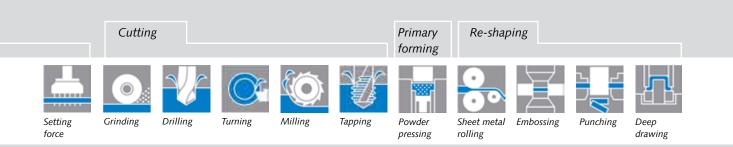
Piezoelectric force sensors promptly reveal any defects or errors during re-shaping processes such as embossing, sheet metal rolling, deep drawing, forging, punching or stamping of metal blanks.

On-line monitoring of process forces helps detect dimensional and material errors as well as insertion discrepancies to protect against damage or overstressing of machinery, tools, molds and workpieces.

Cutting and machining


Piezoelectric force sensors and dynamometers with up to three components monitor the cutting force during machin-

ing processes such as turning, milling, grinding or drilling. This yields significant data on the cutting, feed and passive forces involved. Preliminary analysis of cutting forces improves process capability for large-scale production. Monitoring of these forces subsequently helps detect overloading, tool collisions and tool damage.


Test stand systems

Test stand systems with torque sensors are indispensable for end-of-line testing of electric motors, converters or gearboxes. Optimal operation of such systems basically depends on choosing the right mechanical and instrumentation com-

ponents. Tried and tested modules and reliable mechanical, electrical, hardware and software systems ensure extremely accurate measurement over long periods of time.

Kistler test stand systems have proven effective over the decades in R&D as well as production and quality assurance. Their project portfolio includes mechanical components such as drive measurement add-ons with torque sensors, small test stands with torque-speed measurement and manual or external control, and computer-controlled turnkey solutions for analysis and documentation of electrical machinery.

Selection Criteria for Force Sensors

Single-Component Force Sensors

Direct Force Measurement

Piezoelectric sensors

F _z sensors		-	100	2.14.2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Туре		9001A 9091A	9101A 9107A	9130B 9137B	9130BA 9137BA	9601A1
Name		Load washer	Load washer	SlimLine sensor	SlimLine assembly kit	VarioComp
Measuring direction		¥	¥	¥		¥
Measuring range	kN	0 0,75 to 0 1 200	0 20 to 0 700	0 2,5 to 0 80	0 2,5 to 0 80	030
Further details on p	age	72	73	74	74	83

Calibrated measuring elements			-	
Туре		9173B 9176B	9313AA	9323A 9363A
Name		Quartz force link	Press force sensor	Press force sensor
Measuring direction		¥	¥	¥
Measuring range	kN	0 12 to 0 60	0 0,05 to 0 20	0 0,1 to 0 120
Further details on p	age	76	81	81

Calibrated						
force links						

出

Туре		9301B 9371B	
Name		Quartz force link	
Measuring direction		\$	
Measuring range kN		–2,5 2,5 to –120 120	
Further details on page		80	

High-sensitivity calibrated measuring elements for very small forces

,				U		
Туре		9203	9205	9207	9215	9217A
Name		Sensor for small forces				
Measuring direction		\$	\$	\$	+	\$
Measuring range	Ν	–50 50 to –500 500	-0,5 0,5 to -50 50	-0,5 0,5 to -50 50	0 2 to 0 200	–5 5 to –500 500
Further details on page		77	78	78	79	79

Calibrated mea- suring elements, miniature force sensors		D	D	
Туре		9211/9211B	9213/9213B	
Name		Miniature force sensor	Miniature force sensor	
Measuring direction		¥	¥	
Measuring range kN		0 0,25 to 0 2,5	0 0,25 to 0 2,5	
Further details on p	age	76	77	

Single-Component Force Sensors

Direct Force Measurement

Calibrated measur- ing elements for very large forces				
Туре		9931A		
Name		MN press force calibration sensor		
Measuring direction		¥		
Measuring range	MN	0 2,5 to 0 20		
	kN	0 2 500 to 0 20 000		
Further details on p	age	83		

Force sensor

Force sensor		O	
Туре		9602A1	9602AA
Name		Force transmitter	Force transmitter
Measuring direction		¥	¥
Measuring range	kN	-5 5	0 25
Further details on p	age	84	84

Calibrated force transmitter, force link				G
Туре		9337A	9831C	9833C
Name		Press force transmitter	Welding force calibration transmitter	Welding force calibration transmitter
Measuring direction		Ļ	↓ ↓	Ļ
Measuring range	kN	0 2 to 0 70	0 5 to 0 45	0 5 to 0 25
Further details on p	age	82	85	85

F _y sensors		
Туре		9143B 9147B
Name		SlimLine sensor (shear)
Measuring direction		K
Measuring range F_y	kN	-0,9 0,9 to -8 8
Further details on p	age	75

SG-sensors

F _z sensors		0	-
Туре		4576A	4577A
Name		Tensile and compression sensor	Miniature compression force sensor
Measuring direction		\$	¥
Measuring range	kN	-0,5 0,5 to -200 200	0,1 200
Further details on page		86	87

Selection Criteria for Force Sensors

Single-Component Force Sensors

Shunt Force Measurement

F_z sensors		100			31
Туре		9101A 9107A	9130B 9137B	9130BA 9137BA	9601A1
Name		Load washer	SlimLine sensor	SlimLine assembly kit	VarioComp
Measuring direction		¥	Ļ	¥	¥
Measuring range	kN	0 20 to 0 700	0 2,5 to 0 80	0 2,5 to 0 80	0 30
Further details on p	age	73	74	74	83

Force sensor

		(e)	9
Туре		9602A1	9602AA
Name		Force transmitter	Force transmitter
Measuring direction		¥	¥
Measuring range	kN	-5 5	0 25
Further details on page		84	84

F_y sensors

		0
Туре		9143B 9147B
Name		SlimLine sensor (shear)
Measuring direction		K
Measuring range F_y	kN	–0,9 … 0,9 to –8 … 8
Further details on p	age	75

Single-Component Force Sensors

Indirect Force Measurement

Piezoelectric strain sensors		The second se			
Туре		9232A	9237A		
Name		Surface strain sensor	Surface strain sensor		
Measuring direction		\leftrightarrow	\leftrightarrow		
Measuring range	με	-600 600	-800 800		
Further details on p	age	101	100		
Piezoelectric strain transmitter		Caral	1		
Туре		9238A			
Name		Surface strain transmitter			
Measuring direction		\leftrightarrow			
Measuring range	με	-800 800			
Further details on p	age	100			
Piezoelectric measuring pins		De tra		A and a second s	
Туре		9241C	9243B	9245B	9247A
Name		Transverse measuring pin	Longitudinal measuring pin	Longitudinal measuring pin	Longitudinal measu pin
Measuring direction		\$	\$	\$	\$
Measuring range	με	-0 500	–1 500 1 500	–1 500 1 500	–1 400 1 400
Further details on p	age	102	102	103	103

Selection Criteria for Force Sensors

Multicomponent Force Sensors

Direct Force Measurement

Sensors		a contraction	12	-		D	Lanks	(The second	(The second seco
Туре		9017B/9018B	9047C/9048C	9067/9068	9067C/9068C	9077C/9078C	9251A/9252A	9601A2	9601A3
Name		3-comp. force sensor							
Measuring direction		×	×	×	×	×	×	×	×
Meas. range F_x , F_y	kN	–1 1	–15 15	-20 20	-30 30	-75 75	-2,5 2,5	-2,5 2,5	-2,5 2,5
Meas. range F _z	kN	-2 2	-30 30	-40 40	-60 60	–150 150	-5 5	-5 5	-5 5
Further details on pa	ge	89	90	90	91	92	89	95	95

	0
	9602A3
	3-comp. force transmitter
	×
kN	-5 5
kN	-5 5
ge	96

Calibrated force link		5	*3m.	et.	et.	1
Туре		9317B	9327A/9328A	9347C/9348C	9367C	9377C/9378C
Name		3-component force link				
Measuring direction		×	X	×	X	Å
Meas. range F_{x} , F_{y}	kN	–1 1	-2,5 2,5	–15 15	-30 30	-75 75
Meas. range F_z	kN	-2 2	-5 5	-30 30	-60 60	–150 150
Further details on pa	ge	92	93	93	94	95

Calibrated 2-com- ponent M _z /F _z measuring element			
Туре		9345B	9365B
Name		M_z/F_z measuring element	M_z/F_z measuring element
Measuring direction			
Meas. range F _z	kN	–10 10	-20 20
Meas. range Mz*	N∙m	-25 25	-200 200
Further details on pa	ge	82, 107	82, 107

*) Reaction torque

Selection Criteria for Torque Sensors

Torque Sensors

Reaction Torque Sensors

Sensors		S
Туре		9039 9069
Name		Torque sensor
Measuring direction		Ĵ
Measuring range	N∙m	–5 5 to –200 200
Further details on p	age	105

Calibrated measuring elements

.

	9329A 9389A
	Reaction torque sensor
	l
N∙m	–1 … 1 to –1 000 … 1 000
age	106

Calibrated 2-com- ponent M _z /F _z measuring element			₩.])¢
Туре		9345B	9365B
Name		M _z /F _z measuring element	M_z/F_z measuring element
Measuring direction			↓
Meas. range F_z	kN	-10 10	-20 20
Meas. range M _z *	N∙m	-25 25	-200 200
Further details on page		82, 107	82, 107

*) Reaction torque

Rotating Torque Sensors

Sensors		٢.	i		
Туре		4501A	4502A	4503A	4504A
Name		Slip ring torque sensor	MiniSmart torque sensor	Dual-range torque sensor	Torque measuring flange
Measuring direction		G	G	G	G
Rated torque	N∙m	2 1 000	0,5 1 000	0,2 5 000	50 5 000
Further details on p	age	109	109	110	111

Kistler CAD Download Service

To enable integration of Kistler products into CAD designs, the Kistler CAD Download Services offers prospective and existing customers 3D CAD models free of charge. These can be quickly and easily downloaded from the internet and used directly in CAD designs. Twenty four different file formats are available for the numerous CAD systems. The service can also be employed to download data sheets in the form of PDF files and 2D drawings as DXF files.

The Kistler CAD download service can be accessed in three different ways:

- On the Kistler homepage
 www.kistler.com > Products > Product-Finder using direct product links ("deep links") in the download
- Using the CAD product portal www.partserver.com, which can be accessed in 18 country domains and 5 languages
- Through the Kistler PartCommunity: http://kistler.partcommunity.com

Selection Criteria for Charge Amplifiers

	arge amplifiers						3		P
Тур	e e	5015A	5070A	5073A	5027A	5030A	5037B	5041E	5058A
Nan	ne	Charge meter		ICAM		MiniAmp			
Арр	lication sector	Laboratory	Laboratory	Industry	Industry	Industry	Industry	Industry	Industry
Main application	Conversion of a charge output by a piezoelectric sensor into a voltage signal	Plus display of the mechanical measurand and quick changes to setup.	Display of the mechanical measurand and quick changes to setup.	All-purpose standard amplifier for demanding industrial envi- ronments	Can be inte- grated into ex- isting machine structures very effectively.	Miniature amplifier for confined spaces.	All-purpose standard amplifier for demanding industrial envi- ronments.	Panel mounted version. Gain easily adjusted with thumb- wheel switch.	Suitable for side-by-side mounting in 19" rack. Ideal for multichan- nel applica- tions.
Mea	as. range for FSO min. [pC] 0 ±	2	200	100	150	100	20	100	10
Mea	as. range for FSO max. [pC] 0 ±	2 200 000	600 000	1 000 000	450 000	10 000	650 000	100 000	1 000 000
Nur	nber of measuring channels	1	4 / 8	1 4	1	1	1	1	1
	nber of measuring ranges per suring channel	1	1	2	1	2	1	1	5
Mea	asuring range switching via			digital input		digital input			digital input
	asuring range switching when Isuring								
Out	put signal	±2/2,5/5/10	±10 V	±10 V	±5 V	±10 V	±10 V	±10 V	±10 V
Sum	signal from n measuring channels								
Pea	k memory (+peak, -peak)	+P, -P	+P, -P	+P, -P, (P-P)/2					+P, -P
Trac	k hold memory								
Rese (opt	et using semiconductor switch ion)								
Ove	rload monitoring signal (dig. out)								
Elec	trical isolation of input/output								
Sigr	al input (type/connector)	BNC neg.	BNC neg.	BNC/TNC	KIAG 10-32	KIAG 10-32	BNC/TNC/ KIAG 10-32	BNC neg.	MiniCoax/ BNC
Sigr	al output (type/connector)	BNC	D-Sub	D-Sub	DIN 45326	M12 8-pole	PC/terminal	Terminal	DIN 41612
Cut	-off frequency (–3 dB)	200 kHz	45 kHz	20 kHz	10 kHz	10 kHz	30 kHz	50 kHz	80 kHz
Sele	ctable filter	•							
Adjı	ustable zero point offset								
	232C	S, M	S, M	S, M		S, M			
	setup, M = measurement data) -488								
	setup, M = measurement data)		S, M						
	ver supply	115 / 230 VAC	100 240 VAC	24 VDC	24 VDC	24 VDC	±15 V	±15 V / 24 V	±15 V
Disp	lay for measurements and setting up								
ЬЛ	For panel mounting								
Mounting	Screw mounted								
Voui	Unit for 19" rack system								
<	Desktop case								
	Turn and click knob								
Setup	Potentiometer / DIP switches								
Set	PC tool ManuWare (RS-232C)								
	Thumbwheel switch								
Deg	ree of protection to IEC/EN 60529	IP40	IP40	IP 60/65	IP65	IP65	IP60/IP65/IP67	IP40	IP40
;	Further details on page	113	114	115	116	116	117	117	118

Cont	rolMonitors						
Туре		5863A2	5863A1	5885A*	5875A	4700A	5629A2
Name		CoMo View [®]	CoMo Net [®]	CoMo Sys®	CoMo Logic®	CoMo Torque	Terminal
Main application	Monitoring of relationships between two measurands such as force and displacement or torque and rotation angle. Produces as a good or bad signal to the PLC.	Measurement and monitoring mod- ule with graphical display	Measurement and monitoring module (black box), visualization with CoMo View, chan- nel expansion module for CoMo View.	Measurement and monitoring system for special custom applications, very universal and versatile.	Measurement and monitoring module for one measurand as a function of time, evaluation with three thresholds.	Measurement and monitoring system for torque sensors, measurement of torque and speed/rotation angle, calcula- tion of mechanical power.	Can be networke purely as a monite and control unit with CoMo Net , CoMo View.
Numb	er of measuring channels per unit	1 (x/y)	1 (x/y)	1 7/8 (x/y)	1 (y)	2 (y)	
Relatio	nship between the measuring channels	y = f(x), y = f(t)	y = f(x), y = f(t)	y = f(x), y = f(t)	y = f(t)	y1 = M(t), y2 = n(t)	
	Potentiometer						
Sensor channel X	SSI						
Sensor hannel	Incremental (A+B track)						
с, _С	Process signal	±10 V	±10 V	±10 V			
	Piezoelectric						
≻	Strain gage						
Sensor channel Y	Process signal	±10 V	±10 V	±10 V		±10 V	
Ser han	Frequency signal	10 0	10 0	10 0		≤300 kHz	
0	Incremental (A+B track)						
Cassa		24	no limits	24		(speed, angle)	
	dable up to n pairs of x/y channels per of parameter sets	16	16	16 per channel	8	20	
	ning between parameter sets	dig. in/bus	dig. in/bus	dig. in/bus/LAN/ RS-232C	dig. in	RS-232C/USB	
5	Evaluation windows (boxes)						
Evaluation methods	Envelope curve						
metl	Monitoring of fitting force						
i uoi	Hysteresis						
uati	Gradient						
Eval	Min - max thresholds		-	-			
Deal +							
	ime thresholds y, x	y, x	y, x	y, x	y 10 kHz	y 10 kHz	
	ing rate [S/s]	10 kHz/channel	10 kHz/channel	10 kHz/channel	10 kHz	10 kHz	
Memo	bry depth (pairs of values per cycle)	1 000	1 000	1 000	480	5 000	
\	Profibus		-	-			
vpes	Ethernet						
Interfaces / bus types	RS-232C	-					
卢	USB 2.0						
	Dig. I/O (24 V)						
liz-	Web browser						
risua with	PC tool ManuWare						
Setup / visualiz- ation with	Remote maintenance						
etu) at	Graphical display						
S	Alphanumeric display						
	Q-DAS transfer format (qs-stat)	-					
Export	CSV						
ĒX	XML						
	HTML						
	Panel mounted						
ting	Wall mounted						
Mounting	Unit for 19" rack system			•			
Ŵ	Desktop version						
	DIN rail mounted						
Degre	e of protection to IEC/EN 60529	IP40/IP65	IP40	IP54	IP40	IP40	IP65
Power	r supply	24 VDC	24 VDC	100 230 V	24 VDC	115/230 VAC	24 VDC

*Only available in Germany

Selection Criteria for ControlMonitors and Monitoring Units

Mon	itoring units			
Туре		4734A	4737A	4733A
Name		DMF-P A300 NCF	DMF-P A300	DMF-P A400 advanced
Main application	Monitoring of joining and press-fit processes. Supplying of result as a good or bad signal to the PLC.	Measurement and monitoring system specifically for electrome- chanical NC joining modules (e.g. NCFH Type 2151B etc.)	Measurement and monitoring system for general joining and press-fit processes.	Dual-channel measurement and monitoring system for general joining and press-fit processes. Two indepen- dent channels in a single unit.
Numb	er of measuring channels per unit	1 (x/y)	1 (x/y)	2 (x/y)
Relatio	onship between the measuring channels	y = f(x)	y = f(x), y = f(t)	y = f(x), y = f(t)
	Potentiometer			
sor Iel x	SSI			
Sensor channel x	Incremental			
5	Process signal		±10 V	±10 V
<u> _ ></u>	Piezoelectric	Mounted in the NC joining module		
Sensor channel y	Strain gage			
Se chai	Process signal	±10 V	±10 V	±10 V
Casca	dable up to n pairs of x/y channels			8
	er of parameter sets	32	32	32 per channel
	ning between parameter sets	dig. in/bus/LAN	dig. in/bus/LAN	dig. in/bus/LAN
	Evaluation windows (boxes)			
n st	Monitoring of fitting force			
Evaluation methods	Hysteresis			
Eval	Gradient			
	Inflection point			
Real-t	ime thresholds y, x	у, х	у, х	у, х
	ing rate [S/s]	5 kHz	5 kHz	5 kHz per channel
	bry depth (pairs of values per cycle)	4 000	4 000	4 000 per channel
	Profibus			
bes	Interbus S			
us ty	DeviceNet			
rfaces / bus types	ProfiNet I/O			
lces	Ethernet			
terfa	RS-232C			-
Inte	Dig. I/O (24 V)			
Web ł	prowser			
	te maintenance			
	ics display			
Graph	Q-DAS transfer format (qs-stat)			
Ę	IP.M. data format			
Export	CSV			-
ш	тхт			-
50	Panel mounted			-
Mounting	Wall mounted			-
Моц	Desktop version			-
	e of protection to IEC/EN 60529	IP40/IP54	 IP40/IP54	IP40/IP54
	r supply	24 VDC	24 VDC	24 VDC
>	Further details on page	137	127	128

Key: \blacksquare = standard \square = option (alternative)

Measuring

When it comes to measuring dynamic forces, Kistler mainly relies on the piezoelectric principle. Under mechanical load piezoelectric materials produce positive or negative electric charges. Charge amplifiers convert the charge generated by the piezoelectric material into a proportional voltage. Quartz disks with piezoelectric properties can be arranged in sensors to measure one or several force components or one torque vector.

Kistler provides the following piezoelectric sensors for assembly and product testing:

- Single-component force sensors
- Multicomponent force sensors
- Strain sensors
- Torque sensors

Strain gage technology is the preferred method of measuring torque on rotating shafts. For use in product and component testing Kistler therefore supplies:

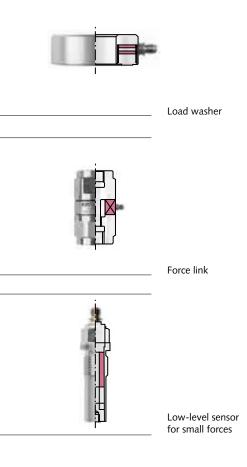
• Strain gage torque sensors for rotating shafts

Single-component force sensors

Single-component force sensors, various types of which are available, are particularly suitable for measuring forces in one defined direction. The so-called load washer is one of these designs that is ideal for practical applications. Preloaded between two special nuts, the washer forms a force link. The preloaded sensor is ideal for measuring tensile and compression forces. In sensors for measuring small forces, the piezoelectric effect exhibited by slender quartz rods results in sensitivity around thirty times that of a load washer.

Multicomponent force sensors

In multicomponent force sensors, a pair of quartz rings cut for the longitudinal effect measures the normal component F_z of forces acting on the sensor, while each of two pairs of rings cut for the shear effect measures one of the two shear components (F_x and F_y). Multicomponent force sensors are usually mounted in groups of three or four in a dynamometer or force plate rather than individually. Most Kistler dynamometers and force plates are suitable for both 3-component force-torque measurement.


Strain sensors

In most areas of application, strain measurement is used for indirect force measurement on or in components. Changes in the measured length of the component are transmitted to the elastic piezoelectric sensor element, where it acts as a shear force. As strains can form in different directions, Kistler offers sensors for measuring them longitudinally or transversely to the mounting hole. To accommodate both tensile and compressive strains, the sensors are mechanically preloaded inside the bore.

Torque sensors

Kistler supplies a variety of sensors for measuring torque. Examples include strain gage designs for rotating shafts, and piezoelectric sensors mounted under a high mechanical preload for measuring reaction torques. Torque dynamometers are used mainly for calibrating torque wrenches.

Measuring

Single-component force sensors

The **load washer** is the traditional standard force sensor. It involves two lightly preloaded quartz disks mounted between the base plate and the cover plate, which are welded to the jacket to form an airtight case. This protects the highly sensitive internal parts against all external influences. The measurement signal is received by an electrode between the two quartz disks, and transmitted to the connector. Load washers are sturdy and extraordinarily versatile in application. They are often integrated into machine structures with a slight initial preload before being fully preloaded as required.

Calibrated and preloaded between two special nuts, the washer forms a **force link**. Preloaded sensors, which are available already calibrated, are easily mounted and can be used immediately for measuring compression and tensile forces. Devices for measuring extremely small forces, termed **low-level force sensors**, have an essentially different design. Slender quartz rods are mounted under preload between parts used to introduce the force. The length of these rods results in them achieving up to thirty times the sensitivity of load washers and, even from minute forces, producing very significant charge levels for processing by the charge amplifier.

Press force transmitters operate without any external charge amplifier at all. The components used to condition the signal are accommodated within the sensor itself. The user therefore does not need to worry about preloading the sensor or installing an additional amplifier. Transmitters supply a voltage output signal.

Single-Component Force Sensors

Load Washer, 0 ... 750 N to 0 ... 400 kN

Technical data Туре 9001А Туре 9011А Туре 9021А Туре 9031А 0 ... 15 Measuring range kΝ 0...7,5 0 ... 35 0 ... 60 0 ... 3,5 0 ... 35 Calibrated meas. ranges kΝ 0 ... 0,75 0 ... 1,5 0...6 0...7,5 0 ... 15 0....60 ≈1,8 ≈3,5 Rigidity kN/µm ≈1 ≈6 14,5 D mm 10,3 22,5 28,5 d 4,1 6,5 10,5 13 mm Н 10 mm 6,5 8 11 Weight 7 20 36 3 g

Туре 9041А

Technical data		Type 9041A	Туре 9051А	Туре 9061А	Туре 9071А
Measuring range	kN	0 90	0 120	0 200	0 400
Calibrated meas. ranges	kN	0 9 0 90	0 12 0 120	0 20 0 200	0 40 0 400
Rigidity	kN/μm	≈7,5	≈9	≈14	≈26
D	mm	34,5	40,5	52,5	75,5
d	mm	17	21	26,5	40,5
Н	mm	12	13	15	17
Weight	g	70	80	157	370

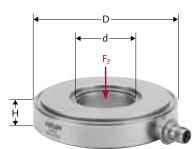
General technical data

Sensitivity pC/N	≈-4,3
Operating temp. range °C	-196 200
Deg. of protection to IEC/EN 60529	IP65 with connected cable IP67 with cable Type 1983AD and welded connector
Connector	KIAG 10-32 neg.

Characteristics

Wide measuring range, high rigidity, compact design, mounting accessories.

Applications


Materials testing, machine testing, measurement of impact, bearing reaction, screw, clamping or punching forces.

Accessories

Connecting cable Type 1631C... Mounting set Type 9422A... Preloading elements Type 9420A... Mounting accessories Type 9505 ... 9579

Data sheet 9001A_000-105

Load Washer, 0 ... 65 kN, 0 ... 1 200 kN

Туре 9081А Technical data Туре 9091А Measuring range kΝ 0 ... 650 0 ... 1 200 Calibrated meas. ranges kΝ 0 ... 65 / 0 ... 650 0 ... 120 / 0 ... 1 200 Rigidity kN/µm ≈30 ≈65 D 100 145 mm d 40,5 mm 66 н 22 28 mm 2 350 Weight 905 g

General technical data

Sensitivity pC/N	≈-2,2
Operating temp. range °C	-50 100
Deg. of protection to IEC/EN 60529	IP65 with connected cable
Connector	TNC neg.

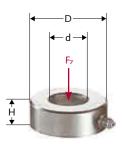
Characteristics

For forces up to 1.2 MN, very high rigidity, compact design.

Applications

Measurement of impact, punching or tire contact forces.

Accessories


Connecting cable Type 1609B...

Data sheet 9081A_000-106

Type 9081A

Single-Component Force Sensors

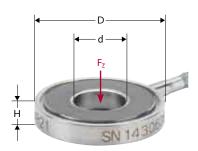
Load Washer, 0 ... 20 kN to 0 ... 700 kN

Туре 9101А

Technical data		Туре 9101А	Туре 9102А	Туре 9103А	Туре 9104А
Measuring range	kN	0 20	0 50	0 100	0 140
Rigidity	kN/µm	≈1,8	≈3,5	≈6	≈7,5
D	mm	14,5	22,5	28,5	34,5
d	mm	6,5	10,5	13	17
Н	mm	8	10	11	12
Weight	g	7	20	36	70

Technical data		Type 9105A	Type 9106A	Туре 9107А
Measuring range	kN	0 190	0 330	0 700
Rigidity	kN/µm	≈9	≈14	≈26
D	mm	40,5	52,5	75,5
d	mm	21	26,5	40,5
Н	mm	13	15	17
Weight	g	80	157	370

General technical data	
Calibrated meas. ranges	not calibrated
Sensitivity pC/N	≈–4,3
Operating temp. range °C	-40 120
Deg. of protection to IEC/EN 60529	IP65 with connected cable IIP67 with cable Type 1983AD and welded connector
Connector	KIAG 10-32 neg.


Characteristics Wide measuring range, high rigidity, compact design. Applications Industrial monitoring functions. Accessories

Connecting cables Type 1939A..., 1941A..., 1943A..., 1945A... Mounting set Type 9422A... Preloading elements Type 9420A...

Data sheet 9101A_000-108

Single-Component Force Sensors

SlimLine Sensor, 0 ... 3 kN to 0 ... 80 kN

Туре 9134В

	Туре 9130В	Туре 9131В	Туре 9132В	Туре 9133В
kN	0 3	0 2,5	0 7	0 14
pC/N	≈–3,5	≈–4	≈–3,8	≈–3,8
kN/µm	≈1	≈0,7	≈1,8	≈2,5
mm	8	7	12	16
mm	2,7	-	4,1	6,1
mm	3	3	3	3,5
g	1	1	2	3
	pC/N kN/µm mm mm	kN 03 pC/N ≈–3,5 kN/µm ≈1 mm 8 mm 2,7 mm 3	kN 03 02,5 pC/N ≈-3,5 ≈-4 kN/μm ≈1 ≈0,7 mm 8 7 mm 2,7 - mm 3 3	kN 0 3 0 2,5 0 7 pC/N ≈-3,5 ≈-4 ≈-3,8 kN/μm ≈1 ≈0,7 ≈1,8 mm 8 7 12 mm 2,7 - 4,1 mm 3 3

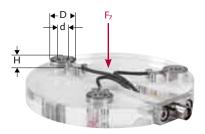
Technical data		Туре 9134В	Туре 9135В	Туре 9136В	Туре 9137В
Measuring range	kN	0 26	0 36	0 62	0 80
Sensitivity	pC/N	≈–3,8	≈–3,8	≈–3,8	≈–3,8
Rigidity	kN/µm	≈5,6	≈7	≈8	≈16
D	mm	20	24	30	36
d	mm	8,1	10,1	12,1	14,1
Н	mm	3,5	3,5	4	5
Weight (without cable)	g	5	7	14	27

General technical data

Calibrated meas. ranges	not calibrated
Operating temp. range °C	-20 120
Deg. of protection to IEC/EN 60529	IP65
Connector	optional: KIAG 10-32 pos. Mini Coax neg.

Characteristics Very slim design, high rigidity, flexible mounting in structures, integral connecting cable.

Applications


Measurement of press-fitting and punching forces, etc., tool monitoring, measurement of large forces in force shunt mode.

Accessories

Preloading disk Type 9410A...

Data sheet 9130B_000-110

SlimLine Assembly Kit

Туре 9133ВА...

Technical data		Туре 9130ВА	Туре 9131ВА	Туре 9132ВА	Туре 9133ВА
Kit consists of	Туре	9130B	9131B	9132B	9133B
Technical data		Туре 9134ВА	Туре 9135ВА	Туре 9136ВА	Туре 9137ВА
Kit consists of	Туре	9134B	9135B	9136B	9137B

General technical data

Deg. of protection to IEC/EN 60529	IP65 with connected cable
Connector	Fischer flange 7-pole neg.

Characteristics

Ready-to-connect assembly kit with 2, 3 or 4 SlimLine sensors ground level, flexible and compact mounting in structure, optional measurement of total or individual sensor forces, cable length options to suit individual sensor.

Applications

Measurement of press-fitting and punching forces, etc., monitoring of follow-on tools, measurement of large forces in force shunt mode, manufacture of small force plates.

Accessories

Connecting cable for summing signal Type 1971A... Connecting cable for single signal Type 1973A...

Data sheet 9130BA_000-109

Single-Component Force Sensors

SlimLine Sensor for Shear Force, -0,9 ... 0,9 kN to -8 ... 8 kN

Technical data		Туре 9143В	Туре 9144В	Туре 9145В	Туре 9146В
Measuring range	kN	-0,9 0,9	–1,7 1,7	-2,7 2,7	-4 4
Sensitivity	pC/N	≈–6	≈–7	≈–7	≈–7
Rigidity	kN/µm	≈2,5	≈5,6	≈7	≈8
Preloading force	kN	9	17	27	40
D	mm	16	20	24	30
d	mm	6,1	8,1	10,1	12,1
Н	mm	3,5	3,5	3,5	4
Weight (without cable)	g	3	5	7	14

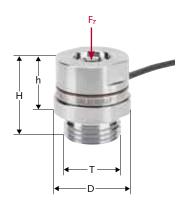
Туре 9143В...

Technical data		Туре 9147В
Measuring range	kN	-8 8
Sensitivity	pC/N	≈–8
Rigidity	kN/µm	≈16
Preloading force	kN	80
D	mm	36
d	mm	14,1
Н	mm	5
Weight (without cable)	g	27

General technical data	
Calibrated meas. ranges	not calibrated
Operating temp. range °C	-20 120
Deg. of protection to IEC/EN 60529	IP65
Connector	optional: KIAG 10-32 pos.
	Mini Coax neg.

Characteristics

High rigidity, very slim and small design, flexible mounting in structures, integral connecting cable.


Applications Monitoring of shear forces in machines, tools and assembly processes, manufacture of compact force plates.

Accessories Preloading disk Type 9410A

Data sheet 9143B_000-113

Single-Component Force Sensors

SlimLine Quartz Force Link for Tensile and Compression Forces, 0 ... 12 kN to 0 ... 60 kN

Туре 9173В

-					
Technical data		Type 9173B	Type 9174B	Туре 9175В	Туре 9176В
Measuring range	kN	0 12	0 20	0 30	0 60
Calibrated measuring rang	e kN	0 12	0 20	0 30	0 60
Permissible tensile force	kN	0 –3	0 –5	0 –8	0 –16
Natural frequency	kHz	≈75	≈70	≈60	≈55
D	mm	18	22	26	32
Н	mm	22	24	28	34
h	mm	14	16	19	23
Т		M12x1,25	M16x1,5	M20x1,5	M24x2
Weight (ohne Kabel)	g	28	40	81	147

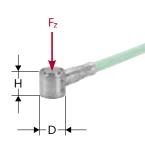
General technical data

Sensitivity pC/N	≈–3,5
Operating temp. range °C	-20 80
Deg. of protection to IEC/EN 60529	IP65
Connector	KIAG 10-32 neg.

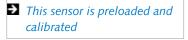
Ch	ara	act	er	isti	CS
	~h		-i d	:+	

High rigidity, very flat and compact design, measures tensile and compression forces, integral cable.

Applications


Force measurement in robotic systems, monitoring of presses, punch presses, embossing and welding units, clamping processes, joining.

Accessories


Connecting cable Type 1631C... Force distributing cap Туре 9416А...

Data sheet 9173B_000-112

Miniature Sensor for Compression Forces, 0 ... 250 N to 0 ... 2,5 kN

Туре 9211...

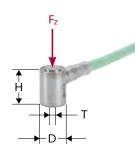
Technical data		Туре 9211
Measuring range	kN	0 2,5
Calibrated meas. ranges	kN	0 0,25 0 2,5
Sensitivity	pC/N	≈-4,4
Natural frequency	kHz	≈200
Operating temp. range	°C	-40 150
D	mm	6
Н	mm	6
Weight	g	1,2
Deg. of protection to IEC/I	EN 60529	IP65
Connector		BNC pos.

Characteristics

Extremely small design, very high natural frequency, integral connecting cable.

Applications

Measurement of punching, bearing reaction, joint and vibration forces, force measurement under adverse conditions as in confined spaces.


Accessories

Extension cable Type 1603B...

Data sheet 9211_000-131

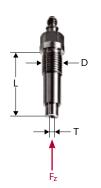
Single-Component Force Sensors

Miniature Sensor for Compression Forces, 0 ... 250 N to 0 ... 2,5 kN

Туре 9213...

÷	This sensor is preloaded and	
	calibrated	

Technical data		Туре 9213
Measuring range	kN	0 2,5
Calibrated meas. ranges	kN	0 0,25 0 2,5
Sensitivity	pC/N	≈-4,4
Natural frequency	kHz	≈200
Operating temp. range	°C	-40 150
D	mm	6
Н	mm	8,5
Т		M2,5 (female thread)
Weight	g	2
Deg. of protection to IEC/	'EN 60529	IP65
Connector		BNC pos.
Connector		BNC pos.


Characteristics Extremely small design, very high natural frequency, integral connecting cable. **Applications** Measurement of punching, bearing reaction, joint and vibration forces, force measurement under adverse conditions as in confined spaces.

Accessories

Extension cable Type 1603B...

Data sheet 9213_000-132

Sensor for Tensile and Compression Forces, -5 ... 5 N to -500 ... 500 N

Technical data Type 9203 Measuring range -500 ... 500 N Ν 0 ... 5 Calibrated meas. ranges 0 ... –50 / 0 ... 50 0 ... –500 / 0 ... 500 Sensitivity pC/N ≈–45 >27 Natural frequency kHz Operating temp. range °C –150 ... 240 D M10x1 L 28,5 mm Т M3 (female thread) Weight 13 g IP65 with connected cable Deg. of protection to IEC/EN 60529 IP67 with cable Type 1983AD and welded connector KIAG 10-32 neg. Connector

Туре 9203

Characteristics

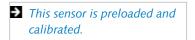
High sensitivity, extremely low threshold, high natural frequency, measures tensile and compression forces, small dimensions.

Applications

Measurement of contact forces of push-button switches, relays, etc., measurement of spring characteristics, extraction and assembly machine forces. The slender design allows arrays of closely spaced sensors, for example for simultaneous testing of the haptic behavior of a complete cell phone keypad.

Accessories

Connecting cable Type 1631C...


Data sheet 9203_000-127

Single-Component Force Sensors

Sensor for Tensile and Compression Forces, -0,5 ... 0,5 N to -50 ... 50 N, Radial Connection

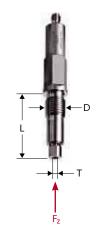
Туре 9205

Technical data	Ту	ype 9205
Measuring range N	_!	50 50
Calibrated meas. ranges N	0	0,5 / 0 –0,5 5 / 0 –5 50 / 0 –50
Sensitivity pC	/N ≈-	–115
Natural frequency kH	z >	10
Operating temp. range °C	-!	50 150
D	N	110x1
L mr	า 28	8,5
Т	N	13 (female thread)
Weight g	19	9
Deg. of protection to IEC/EN 6		265 with connected cable 267 with cable Type 1983AD and welded connector
Connector	К	IAG 10-32 neg., radial

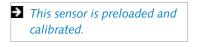
Characteristics

High sensitivity, extremely low threshold, high natural frequency, measures tensile and compression forces, small dimensions.

Applications


Measurement of contact forces of push-button switches, relays, etc., measurement of spring characteristics, extraction and assembly machine forces.

Accessories


Connecting cable Type 1631C... Coupling element Type 9405

Data sheet 9205_000-129

Sensor for Tensile and Compression Forces, -0,5 ... 0,5 N to -50 ... 50 N, Axial Connection

Туре 9207

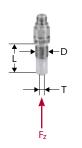
Technical data Туре 9207 -50 ... 50 Measuring range Ν 0 ... -0,5 / 0 ... 0,5 Calibrated meas. ranges Ν 0 ... –5 / 0 ... 5 0 ... –50 / 0 ... 50 pC/N Sensitivity ≈–115 Natural frequency kHz >10 D M10x1 L 28,5 mm Т M3 (female thread) Weight 19 g Operating temp. range °C -50 ... 150 Deg. of protection to IEC/EN 60529 IP65 with connected cable IP67 with cable Type 1983AD... and welded connector Connector KIAG 10-32 neg., axial

Characteristics

High sensitivity, extremely low threshold, high natural frequency, measures tensile and compression forces, small dimensions.

Applications

Measurement of contact forces of push-button switches, relays, etc., measurement of spring characteristics, extraction and assembly machine forces.


Accessories

Connecting cable Type 1631C... Coupling element Type 9405

Data sheet 9207_000-130

Single-Component Force Sensors

Sensor for Compression Forces, 0 ... 2 N to 0 ... 200 N

Туре 9215

Technical data		Туре 9215
Measuring range	Ν	-20 200
Calibrated meas. ranges	N	0 2 0 20 0 200
Sensitivity	pC/N	≈–81
Natural frequency	kHz	>50
D		M5x0,5
L	mm	12,5
Т		M2 (female thread)
Weight	g	2,5
Operating temp. range	°C	-50 180
Deg. of protection to IEC/E	N 60529	IP65 with connected cable IP67 with cable Type 1983AD and welded connector
Connector		M4x0,35 neg.

This sensor is preloaded and calibrated.

Characteristics The highly sensitive force link used gives the sensor a very high rigidity and low transverse sensitivity. Measuring surface is tapped M2 hole.

Applications

Type 9217A -500 ... 500

0 ... –50 / 0 ... 50 0 ... –500 / 0 ... 500

M3 (female thread)

KIAG 10-32 neg.

IP65 with connected cable

IP67 with cable Type 1983AD... and welded connector

0 ... 5

≈-105

M10x1

>20

28,5

16

-50 ... 150

Ν

Ν

pC/N

kHz

mm

g

°C

With its small dimensions, the sensor is ideal for mounting in confined spaces. Wide range of applications in product testing and high-sensitivity force measurement in research and development. Construction of miniature force plates and arrays of sensors at spacings ≥7,5 mm.

Accessories

Connecting cable Type 1651C...

Data sheet 9215_000-487

Sensor for Tensile and Compression Forces, M10x1, -50 ... 50 N to -500 ... 500 N

Technical data

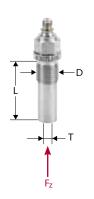
Sensitivity

D

L

Т

Weight


Measuring range

Natural frequency

Operating temp. range

Deg. of protection to IEC/EN 60529

Calibrated meas. ranges

Туре 9217А

This sensor is preloaded and calibrated.

Characteristics

Connector

Sturdy piezoelectric force sensor with a high sensitivity for small tensile and compression forces starting from a few mN. High rigidity and very low transverse sensitivity. Measuring surface is tapped M3 hole.

Applications

Wide range of applications in product testing – of push-button and other switches, connectors, springs, etc. as well as general use for highly sensitive force measurement in research and development. The slender design allows arrays of closely spaced sensors, for example for simultaneous testing of the haptic behavior of a complete cell phone keypad.

Accessories

Connecting cable Type 1631C...

Data sheet 9217A_000-546

Single-Component Force Sensors

Quartz Force Link for Tensile and Compression Forces, -2,5 ... 2,5 kN to -120 ... 120 kN

Туре 9301В

Technical data		Туре 9301В	Туре 9311В	Туре 9321В	Туре 9331В
Measuring range	kN	-2,5 2,5	-5 5	-10 10	-20 20
Calibrated meas. ranges	kN	02,5 0 0,025 0 2,5	0 –5 0 0,05 0 5	0 –10 0 0,1 0 10	020 0 0,2 0 20
Rigidity	kN/µm	≈0,3	≈0,6	≈0,9	≈1
Natural frequency	kHz	≈90	≈70	≈55	≈45
D	mm	11	15	23	29
Н	mm	25	30	45	52
Т		M5	M6	M10	M12
Weight	g	14	28	90	170

Technical data		Туре 9341В	Туре 9351В	Туре 9361В	Туре 9371В
Measuring range	kN	-30 30	-40 40	-60 60	–120 120
Calibrated meas. ranges	kN	0 –30 0 0,3 0 30	040 0 0,4 0 40	0 –60 0 0,6 0 60	0120 0 1,2 0 120
Rigidity	kN/μm	≈1,8	≈2	≈2,8	≈4
Natural frequency	kHz	≈40	≈33	≈28	≈22
D	mm	35	41	53	76
Н	mm	62	72	88	108
Т		M16	M20	M24	M30
Weight	g	330	480	1 020	2 500

General technical data	
------------------------	--

Sensitivity pC/N	≈–4
Operating temp. range °C	-40 120
Deg. of protection to IEC/EN 60529	IP65 with connected cable IP67 with cable Type 1983AD and welded connector
Connector	KIAG 10-32 neg.

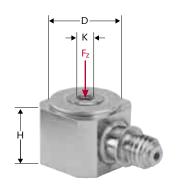
These sensors are preloaded and calibrated.

Characteristics

Measures tensile and compression forces, easy mounting with centering seats for accuracy, groundisolated.

Applications

Impact forces, shock loads on landing gear, impact tests, supporting and compression forces. Quality control through measurement of forces in switches and monitoring of assembly machines.


Accessories

Connecting cable Type 1631C... Force distributing cap Type 9500A... Flange Type 9504A...

Data sheet 9301B_000-107

Single-Component Force Sensors

Press Force Sensor for Compression Forces, 0 ... 50 N to 0 ... 20 kN

Technical data		Type 9313A	А1 Туре 9313АА2
Measuring range	kN	0 5	0 20
Calibrated meas. ranges	kN	0 0,05 0 0,5 0 5	0 0,2 0 2 0 20
Permissible tensile force	kN	0 –0,5	0 –2
Sensitivity	pC/N	≈–10	≈–10
D	mm	13	19
К		M2,5	M4
Н	mm	10	14
Weight	g	10	25

Туре 9313АА...

General technical data

Operating temp. range °C	–40 120
Deg. of protection to IEC/EN 60529	IP65 with connected cable IP67 with cable Type 1983AD and welded connector
Connector	KIAG 10-32 neg.

These sensors are preloaded and calibrated.

Characteristics
Compact, ready-to-mount force
sensor, flexible adaptation, central

Applications

Monitoring sensor for joining processes, compression force measurement on presses, for test equipment.

Accessories

Flange Type 9580A... Force distributing cap Type 9500AA... Mounting stud Type 9590A...

Data sheet 9313_000-705

Press Force Sensor for Compression Forces, 0 ... 100 N to 0 ... 120 kN

hole

Type 9323A... to 9363A...

÷	These sensors are preloaded	
	and calibrated.	

Туре 9363А Technical data Туре 9323АА Туре 9323А Туре 9333А Туре 9343А -20 ... 120 kΝ 0 ... 10 0 ... 20 0 ... 50 0 ... 70 Measuring range 0 ... 0,1 0 ... 0,2 0 ... 0,5 0 ... 0,7 0 ... 1,2 Calibrated meas. ranges kΝ 0 ... 7 0 ... 1 0 ... 2 0...5 0 ... 12 0 ... 50 0 ... 70 0 ... 10 0 ... 20 0 ... 120 Permissible tensile force 0 ... –10 0 ... –20 0 ... –2 0 ... –5 kΝ 0 ... –1 Sensitivity ≈–10 ≈–3,9 pC/N ≈–4 ≈–4 ≈–4 D mm 20 20 30 36 54 Ρ M5x0,5 M5x0,5 M9x0,5 M13x1 M20x1,5 н 42 60 26 26 34 mm Weight 137 800 50 47 240 g

General technical data				
Operating temp. range °C	-40 120			
Deg. of protection to IEC/EN 60529	IP65 with connected cable IP67 with cable Type 1983AD and welded connector			
Connector	KIAG 10-32 neg.			

Characteristics Compact, ready-to-mount force sensor, flexible adaptation, central hole. Applications Monitoring sensor for joining processes, compression force measurement on presses, for test equipment.

Accessories

Flange Type 9580A... Force distributing cap Type 9582A... Female thread adapter Type 9584A... Male thread adapter Type 9586A...

Data sheet 9323_000-704

Single-Component Force Sensors

Press Force Transmitter, 0 ... 2 kN to 0 ... 70 kN in Each of Two Switchable Ranges

Туре 9337А40U

This sensor is preloaded and calibrated.

The parameters of this transmitter can be configured quickly and easily with the ManuWare PC program.

Technical data		Туре 9337А40	Туре 9337А40U
Measuring ranges I/II, factory		0 50 / 0 5	Custom preset and calibrated from 0 70/50/20/10/5/2 for each meas. range
Calibrated meas. ranges	kN	0 50 / 0 5	As chosen by customer
General technical data			
Max. measuring ranges	kN	0 70	
Output signal [FSO]	V	0 10	
D	mm	50	
d	mm	36	
К		4 x M5	
L	mm	66,5	
Н	mm	45	
Weight	g	520	
Operating temp. range	°C	–10 70	
Deg. of protection to IEC/	EN 60529	IP67	
Connector		M12x1 8-pole	

Characteristics

Robust press force sensor with integral, configurable, fully digital charge amplifier for dynamic and quasistatic forces.

Applications

Direct measurement of dynamic and quasistatic compression forces on presses and joining systems; measurement of feed and pressing forces; measurement of signatures in product testing; use as reference sensor, for instance for on-site calibration of force and strain sensors mounted in the structure of a machine.

Accessories

Flange Type 9594A1 Force distributing cap Type 9582A1 Female thread adapter Type 9584A1 Male thread adapter Type 9586A1 USB 1.1 to RS-232C converter Type 2867

Data sheet 9937A_000-664

2-Component Sensor Fz, Mz, 0 ... 1 kN to 0 ... 20 N plus 0 ... 2,5 N·m to 0 ... 200 N·m

Туре 9345А

These sensors are preloaded and calibrated.

Technical data		Туре 9345В	Туре 9365В
Measuring range Fz	kN	-10 10	-20 20
Calibrated meas. ranges	kN	0 1 0 10	0 2 0 20
Sensitivity F _z	pC/N	≈–3,7	≈–3,6
Rigidity cz	kN/µm	≈1,7	≈2,8
Measuring range Mz	N∙m	-25 25	-200 200
Calibrated meas. ranges	N∙m	0 –2,5 / 0 2,5 0 –25 / 0 25	0 –20 / 0 20 0 –200 / 0 200
Sensitivity Mz	pC/N·m	≈–200	≈–140
Rigidity c (calculated)	N∙m/µrad	≈0,19	≈0,92
D	mm	39	56,5
Н	mm	42	60
Weight	g	267	834
Operating temp. range	°C	-40 120	-40 120
Deg. of protection to IEC	/EN 60529	IP65 with connected cable	IP65 with connected cable
Connector		M8x0,75 3-pole neg.	V3 neg.

Characteristics

Reaction torque sensor with the option of measuring an additional tensile/compression force acting.

Applications

Examination of the correlation between drilling torque and rupture force for PCBs, tightening torque and stripping forces in screw connections and similar processes.

Accessories

Connecting cables Type 1693A..., 1694A..., 1695A..., 1698A...

Data sheet 9345B_000-630

Single-Component Force Sensors

MN Press Force Calibration Sensor for Large Compression Forces, 0 ... 2,5 MN to 0 ... 20 MN



Technical data Туре 9931А1 Туре 9931А2 Туре 9931АЗ Туре 9931А4 Measuring range ΜN 0 ... 2,5 0...5 0 ... 10 0 ... 20 Calibrated meas. ranges MN 0 ... 2,5 0...5 0 ... 10 0 ... 20 pC/kN Sensitivity ≈-14 ≈–10 ≈–7 ≈–5 D 144 mm 120 192 262 Н 200 220 260 310 mm 100 Weight 14 22 46 kg

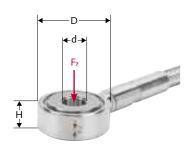
General technical data

Operating temp. range °C	0 70
Deg. of protection to IEC/EN 60529	IP65 with connected cable
Connector	Fischer DBEE102 A 014-60 neg.

Туре 9931А2

Characteristics
Piezoelectric force sensor for
measuring quasistatic and dynamic
compression forces in the mega-
newton range in large industrial
presses.

Applications


Portable force link for checking and calibration of compression forces in mechanical or hydraulic presses. Measurement of force distribution in large presses.

Accessories

Tapered flange Type 9588A3x Cover plate Type 95880x Connecting cables Types 1661A... and 1667B...

Data sheet 9931A_000-525

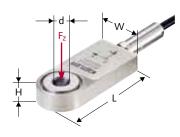
VarioComp Force Sensor, 0 ... 30 kN

Technical data Type 9601A11... Measuring range kΝ 0 ... 30 Calibrated meas. ranges not calibrated Sensitivity pC/N ≈–4,2 Rigidity kN/µm ≈1,25 D mm 25 d mm 8,1 н 10 mm Weight ≈24 g -50 ... 120 Operating temp. range °C IP65 with PUR sheath Deg. of protection to IEC/EN 60529 IP67 with steel sheath Connector KIAG 10-32 pos. option Mini Coax neg.

Туре 9601А11...

Characteristics

Compact and robust design, integral cable with steel or PUR sheath, also available as multicomponent force sensor with selection of measuring axes in the x, y and z direction (see VarioComp multicomponent force sensor Type 9601A2.../A3...).


Applications Monitoring of machinery and tools.

Accessories Preloading key Type 9463 Set of preloading elements Type 9461 Connecting cable Mini Coax pos. -BNC pos. Type 1937A...

Data sheet 9601A_000-172

Single-Component Force Sensors

Force Sensor with Integral Electronics, 2 Measuring Ranges , -5 ... 5 kN

Туре 9602А1...

mics, 2 measuring Ranges,				
Technical data	Туре 9602А1			
Number of measuring ranges	2 (switchable 5:1)			
Measuring range adjustment	fixed			
Measuring ranges kN	–1 1 –5 5			
Calibrated meas. ranges	not calibrated			
Sensitivity (nom.) mV/N	≈1 ≈5			
Output signal V	±5			
Rigidity kN/µm	1,25			
L mm	57			
W mm	25			
d mm	8,1			
H mm	10			
Weight g	30			
Operating temp. range °C	0 60			
Deg. of protection to IEC/EN 60529	IP67			
Connector	optional Fischer 7-pole pos. D102 or integral cable			

Characteristics

Integral charge amplifier electronics, two measuring ranges, sturdy, compact design, straight or right-angled connector outlet (also available in 3-component version, see Type 9602A3...).

Applications


Process monitoring in metal cutting machine tools, presses (joining and assembly processes) and forming machines.

Accessories

Connecting cable Type 1783A... Preloading key Type 9463 Preloading disk Type 9408

Data sheet 9602A_000-173

Force Sensor with Integral Electronics, 0 ... 25 kN

Туре 9602АА...

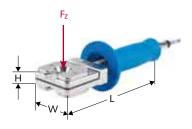
Technical dataNumber of measuring rangesMeasuring range adjustmentMeasuring rangeskN	Type 9602AA 2 (switchable 5:1) incremental (0 99) 0 5
Measuring range adjustment	incremental (0 99)
Measuring ranges kN	05
	0 25
Calibrated meas. ranges	not calibrated
Sensitivity (nom.) mV/N	N ≈0,44 ≈220
Output signal V	±10
Rigidity kN/µ	m 1,25
L mm	57
W mm	25
d mm	8,1
H mm	10
Weight g	30
Operating temp. range °C	0 60
Deg. of protection to IEC/EN 605	29 IP67 with connected cable
Connector	optional Lumberg M12x1, 8-pole pos. or integral cable

Characteristics

Integral charge amplifier electronics, two measuring ranges, sturdy, compact design, straight or rightangled connector outlet.

Applications

Process monitoring in metal cutting machine tools, presses (joining and assembly processes) and forming machines.


Accessories

Connecting cable Type 1787A... Preloading key Type 9463 Preloading disk Type 9408

Data sheet 9602A_000-526

Single-Component Force Sensors

Electrode Force Calibration System for Spot Welding, 0 ... 5 kN to 0 ... 45 kN

Туре 9831С1...

Туре 9831С0001

This sensor is preloaded and calibrated.

÷.,					
	Technical data		Туре 9831С1	Туре 9831С2	Туре 9831СЗ
	Measuring range	kN	05	0 10	0 45
	Calibrated meas. range	kN	0 5	0 10	0 45
	Sensitivity	V/kN	≈1	≈0,5	≈0,1
	Output signal	V	±5	±5	±4,5

General technical data

oonoral toomioal aata		
L	mm	240
Н	mm	30
W	mm	70
Weight	kg	1,4
Operating temp. range	°C	0 60
Deg. of protection to IEC/EN 60529		IP65 with connected cable
Connector		Amphenol circular connector, 8-pole pos. DIN 45326

Characteristics

Minimal electrode spacing of 3 mm, replaceable inserts for adapting the transmitter to suit different electrode types, maximum safety standard, portable or stationary use, optional measuring range.

Applications

Interval control measurement on welding robots, optimization of welding tong life, servicing work on test stands, setting up of stationary welding lines, quality management (ISO 9001).

Accessories

Connecting cable Type 1500A35 Inserts Type 9426Bxx Welding monitor Type 5825A2 Welding force measuring case Type 9831C0001

Data sheet 9831C_000-535

Electrode Force Test Sensor with Integral Electronics 0 ... 5 kN to 0 ... 25 kN

Туре 9833С1

Technical data		Туре 9833С1	Туре 9833С2	Туре 9833СЗ
Measuring ranges	kN	0 1 0 5	0 5 0 10	0 10 0 25
Calibrated meas. ranges	kN	0 1 0 5	0 5 0 10	0 10 0 25
Sensitivity	mV/N	≈1 ≈5	≈0,5 ≈1	≈0,2 ≈0,5

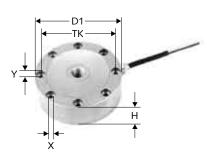
General technical data	
Number of measuring ranges	2 (switchable 5:1)
Measuring range adjustment	fixed
Output signal V	±5
H mm	14,5
L mm	72
W mm	43
Weight g	280
Operating temp. range °C	0 60
Deg. of protection to IEC/EN 6052	P IP65 with connected cable
Connector	Lumberg M12, 5-pole pos.

Characteristics

With Types 9833C1.../9833C2... minimal electrode spacing of only 6,2 mm (electrodes Type F, ø13 mm), calibrated sensor, no uniform sensitivity, sensor design not ground isolated, switchable measuring range.

Applications

Quality assurance in vehicle body manufacture, periodic testing of electrode clamping force of robot welding tongs on resistance welding production lines.


Accessories

Connecting cable Type 1785A...

Data sheet 9833C_000-575

Single-Component Force Sensors

Strain Gage Sensor for Tensile and Compression Forces, 0,5 ... 200 kN

Туре 4576А...

Technical data		Туре 4576А0,5.	Type 4576A1	Туре 4576А2	Туре 4576А5
Measuring range	kN	0,5	1	2	5
Н	mm	16	16	16	16
D1	mm	54,5	54,5	54,5	54,5
ТК	mm	45	45	45	45
Х	mm	4,5	4,5	4,5	4,5
Y	mm	8	8	8	8

Technical data		Туре 4576А10	. Type 4576A20	Туре 4576А50	Туре 4576А100
Measuring range	kN	10	20	50	100
Н	mm	16	25	35	50
D1	mm	54,5	79	119	155
ТК	mm	45	68	105	129
Х	mm	4,5	4,5	6,6	13,5
Y	mm	8	8	11	20

Technical data		Туре 4576А200
Measuring range	kN	200
Н	mm	50
D1	mm	155
ТК	mm	129
Х	mm	13,5
Y	mm	20

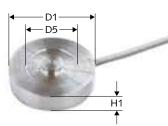
1,5 (optional 1,0)
0,25 5
15 70
-30 80
IP52 (<0 10 kN) IP65 (>0 20 kN)
350
Binder connector, 6-pole

Characteristics

Robust, compact tensile and compression force sensor with continuous thread on the central axis for force application through a load button or an adapter depending on application, economical measurement solution, force must be applied avoiding torsion or transverse force, mounting on ground and hardened bearing surfaces using holes through outside ring.

Applications

Measurement of static, quasistatic and dynamic press-fitting and insertion forces, spring forces, cutting forces, measurement and monitoring of assembly forces, determination of drilling machine feed force.

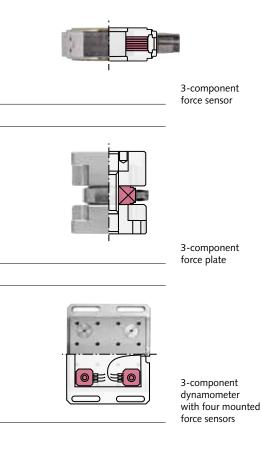

Accessories

None

Data sheet 4576A_000-675

Single-Component Force Sensors

Miniature Strain Gage Sensor for Compression Forces 0,1 ... 200 kN



Туре 4577А...

kN Ω mm mm mm kN Ω mm mm mm	0,1 350 9,9 31,8 19 Type 4577A2 2 350 9,9 31,8 19	0,2 350 9,9 31,8 19 Type 4577A5 5 700 9,9 31,2 21,1	0,5 350 9,9 31,8 19 Type 4577A10 10 700 9,9 31,2 21,1	20 700 16 37,6
mm mm mm kN Ω mm mm	9,9 31,8 19 Type 4577A2 2 350 9,9 31,8	9,9 31,8 19 Type 4577A5 5 700 9,9 31,2	9,9 31,8 19 Type 4577A10 10 700 9,9 31,2	9,9 31,8 19 Type 4577A20 20 700 16 37,6
mm mm kN Ω mm mm	31,8 19 Type 4577A2 2 350 9,9 31,8	31,8 19 Type 4577A5 5 700 9,9 31,2	31,8 19 Type 4577A10 10 700 9,9 31,2	31,8 19 Type 4577A20 20 700 16 37,6
mm kN Ω mm mm	19 Type 4577A2 2 350 9,9 31,8	19 Type 4577A5 5 700 9,9 31,2	19 Type 4577A10 10 700 9,9 31,2	19 Type 4577A20 20 700 16 37,6
kN Ω mm mm	Type 4577A2 2 350 9,9 31,8	Type 4577A5 5 700 9,9 31,2	Type 4577A10 10 700 9,9 31,2	Type 4577A20 20 700 16 37,6
Ω mm mm	2 350 9,9 31,8	5 700 9,9 31,2	10 700 9,9 31,2	20 700 16 37,6
Ω mm mm	2 350 9,9 31,8	5 700 9,9 31,2	10 700 9,9 31,2	20 700 16 37,6
Ω mm mm	350 9,9 31,8	700 9,9 31,2	700 9,9 31,2	700 16 37,6
mm mm	9,9 31,8	9,9 31,2	9,9 31,2	16 37,6
mm	31,8	31,2	31,2	37,6
111111	17	∠1,1	∠1,1	
				27,4
	Туре 4577А50	Туре 4577А100	Туре 4577А200	
kN	50	100	200	
Ω	700	700	350	
mm	16	25,4	38,1	
mm	37,6	50,3	76,2	
mm	27,4	34,8	45	
mV/V	1			
kg	0,04 1,2			
°C	15 70			
°C	-20 100			
60529	IP64			
	Binder connector	r, 6-pole		
	nm nm nV/V cg C C 60529	nm 16 nm 37,6 nm 27,4 nV/V 1 (g 0,04 1,2 C 15 70 C -20 100 60529 IP64 Binder connecto Applications Force monitoring (nm 16 25,4 nm 37,6 50,3 nm 27,4 34,8 nV/V 1 kg 0,04 1,2 C 15 70 C -20 100 60529 IP64 Binder connector, 6-pole Applications Force monitoring during press	Inf 16 25,4 38,1 nm 37,6 50,3 76,2 nm 27,4 34,8 45 mV/V 1 - - rg 0,04 1,2 - - C 15 70 - - C -20 100 - - 60529 IP64 Binder connector, 6-pole Accessories None

Robust, compact compression force sensor designed as flat cylindrical disk with a load button for force application, economical force solution, force must be applied concentrically avoiding transverse force, mounting on flat, smooth surfaces, body of sensor sealed. Force monitoring during press fitting, measurement of static and dynamic compression forces in equipment manufacture, on production lines, in measurement and monitoring equipment and manufacturing of jigs and fixtures and special machinery. Resists demanding corrosive industrial atmospheres.

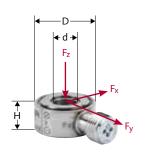
Data sheet 4577A_000-674

Multicomponent Force Sensors

The piezoelectric measuring principle is an ideal basis for manufacturing multicomponent force sensors, whose design is similar to that of the single-component load washer.

A pair of quartz washers cut for the longitudinal effect measures the normal component Fz of forces acting on the sensor, while each of two pairs of washers cut for the shear effect measures one of the two shear components Fx and Fy. As the shear forces are transmitted through friction alone, multicomponent force sensors must always be mounted under sufficient mechanical preload.

Multicomponent force sensors are usually mounted in so called **dynamometers** or **force plates** in groups of three of four rather than individually. This configuration exploits the particular characteristics of these piezoelectric designs, which allow sensors with the same sensitivity to be directly electrically connected in parallel. The output signal obtained corresponds to the algebraic sum of all of the individual forces acting upon the sensors. A dynamometer therefore acts as a single multicomponent force sensor to measure the three components of the acting force independently of its point of application.


Although moments acting upon the dynamometer do apply a load to the sensor, parallel connection prevents them being measured. These moments can, however, be determined from the individual output signals of those sensors not connected in parallel. Such a system measures the three components of the resultant force and the three components of the resultant moment in terms of the coordinates defined by the sensors.

Most Kistler dynamometers and force plates are suitable for both 3-component force measurement and 6-component force/moment measurement.

Multicomponent Force Sensors

3-Component Force Sensor, ø16,5 mm, -2 ... 2 kN

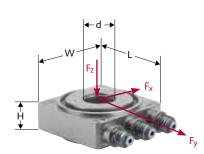
Туре 9017В

,			
Technical data			Туре 9017В, 9018В, 9016В4
Measuring range	F _x , F _y F _z	kN kN	−1 1 −2 2 Standard mounting with a preload of 10 kN
Calibrated meas. ranges	F _x , F _y F _z F _z	kN kN kN	0 1 0 2 0 12 (not preloaded)
Sensitivity	F _x , F _y F _z	pC/N pC/N	≈–26 ≈–11,5
Rigidity	C _X , Cy Cz	N/μm N/μm	≈170 ≈740
D		mm	16,5
d		mm	6,5
Н		mm	8
Weight		g	8,5
Operating temp. range		°C	-50 120
Deg. of protection to IEC/I	EN 60529		IP65 with connected cable
Connector			M8x0,75 3-pole neg.

Characteristics

Wide measuring range, high rigidity and sensitivity, smallest 3-component force sensor, multipole connector. Types 9017B and 9018BB differ in terms of the position of their coordinate system. Type 9016B4: set of four selected sensors Types 9017B and 9018B.

Applications


Measurement of three orthogonal force components, – in miniature cutting force dynamometers for superfinishing, wind tunnel balances, measurement in confined spaces.

Accessories

Connecting cables Types 1639A... and 1694A... Wrench adapter Type 9479

Data sheet 9017B_000-465

3-Component Force Sensor, 24x24 mm, -5 ... 5 kN

Туре 9251А

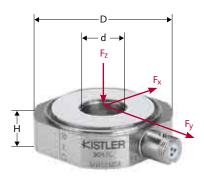
Technical data			Туре 9251А, 9252А, 9250А4, 9251А4
Measuring range	F _x , F _y	kN	-2,5 2,5
	Fz	kN	-5 5
			Standard mounting with a preload of 25 kN
Calibrated meas. ranges	F _x , F _y	kN	0 2,5
	Fz	kN	0 5
	Fz	kN	0 30 (not preloaded)
Sensitivity	F _x , F _y	pC/N	≈–8
	Fz	pC/N	≈-4
Rigidity	C _X , C _Y	kN/µm	≈1
	Cz	kN/µm	≈2,6
LxWxH		mm	24x24x10
d		mm	8,1
Weight		g	32
Operating temp. range		°C	-60 150
Deg. of protection to IEC/	/EN 60529		IP65 with connected cable
Connector			3 x KIAG 10-32 neg.

Characteristics

Wide measuring range, high rigidity and sensitivity, low crosstalk, compact design, Types 9251A and 9252A differ by the position of their coordinate system. Type 9250A4: set of four selected sensors Type 9251A and 9252A. Type 9251A4: set of four selected sensors Type 9251A.

Applications

Cutting, impact, vibration and recoil forces, dynamic forces on vibrating tables, measurement in wind tunnels, determination of coefficients of friction.


Accessories

Connecting cable Type 1631C... Set of preloading elements Type 9461 Wrench adapter Type 9475

Data sheet 9251A_000-145

Multicomponent Force Sensors

3-Component Force Sensor, 40x40x14 mm, -30 ... 30 kN

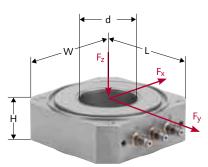
Туре 9047С

Technical data			Туре 9047С, 9048С, 9046С4
Measuring range	F _x , F _y F _z	kN kN	–15 15 –30 30 Standard mounting with a preload of 70 kN
Calibrated meas. ranges	F _x , F _y F _z F _z	kN kN kN	0 15 0 30 0 100 (not preloaded)
Sensitivity	F _x , F _y F _z	pC/N pC/N	≈–8,1 ≈–3,7
Rigidity	C _x , C _y C _z	kN/μm kN/μm	≈0,6 ≈1,4
D		mm	45
d		mm	14,1
Н		mm	14
Weight		g	91
Operating temp. range		°C	-40 120
Deg. of protection to IEC/	EN 60529		IP65 with connected cable Type 1698AA/AB IP67 with connected cable Type 1698ACsp
Connector			V3 neg.

Characteristics

Accurate measurement irrespective of force application point, wide frequency range, easy mounting, sealed stainless sensor case, robust multi-pole connector.

Applications


3-component force sensors measure cutting forces during machining, impact forces in crash tests, rocket engine recoil forces, vibration forces on aerospace components, friction forces, forces in product testing, vehicle forces on road and test stand, forces on wind tunnel balances.

Accessories

Set of preloading elements, M14x1,5, Type 9465 Wrench adapter Type 9742 for Type 9465 3-wire connecting cables Types 1698AA, 1698AB and 1698Csp Summing box Type 5417

Data sheet 9047C_000-592

3-Component Force Sensor, 56x56 mm, -40 ... 40 kN

Туре 9067

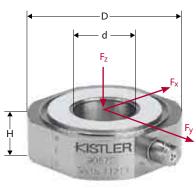
Technical data			Type 9067, 9068, 9066A4, 9067A4
Measuring range	F _x , F _y F _z	kN kN	–20 20 –40 40 Standard mounting with a preload of 160 kN
Calibrated meas. ranges	F _x , F _y F _z F _z	kN kN kN	0 20 0 40 0 200 (not preloaded)
Sensitivity	F _x , F _y F _z	pC/N pC/N	≈–8 ≈–3,8
Rigidity	c _x , c _y c _z	kN/μm kN/μm	≈0,7 ≈4,5
LxWxH		mm	56x56x20
d		mm	26,5
Weight		g	270
Operating temp. range		°C	-50 150
Deg. of protection to IEC/	'EN 60529		IP65 with connected cable
Connector			3 x KIAG 10-32 neg.

Characteristics

Very wide measuring range, high rigidity and sensitivity, low crosstalk, compact design. Types 9067 and 9068 differ by the position of their coordinate system. Type 9066A4: set of four sensors Type 9067.

Applications

Cutting forces, impact forces, recoil forces, dynamic forces on vibrating tables, determination of coefficients of friction.


Accessories

Connecting cable Type 1631C... Set of preloading elements Type 9451 or 9459 for Type 9465 Wrench adapter Type 9471 or 9477

Data sheet 9067_000-118

Multicomponent Force Sensors

3-Component Force Sensor, 60x60x21 mm, -60 ... 60 kN

Туре 9067С

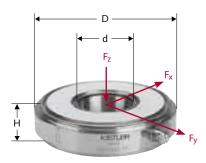
Technical data			Туре 9067С, 9068С, 9066С4
Measuring range	F _x , F _y F _z	kN kN	–30 30 –60 60 Standard mounting with a preload of 140 kN
Calibrated meas. ranges	F _x , F _y F _z F _z	kN kN kN	0 30 0 60 0 200 (not preloaded)
Sensitivity	F _x , F _y F _z	pC/N pC/N	≈–8,1 ≈–3,9
Rigidity	c _x , c _y c _z	kN/μm kN/μm	≈0,7 ≈4,5
D		mm	65
d		mm	26,5
Н		mm	21
Weight		g	285
Operating temp. range		°C	-40 120
Deg. of protection to IEC/	EN 60529		IP65 with connected cable Type 1698AA/AB IP67 with connected cable Type 1698ACsp
Connector			V3 neg.

Characteristics

Accurate measurement irrespective of force application point, wide frequency range, easy mounting, sealed stainless sensor case, robust multi-pole connector.

Applications

3-component force sensors measure cutting forces during machining, impact forces in crash tests, rocket engine recoil forces, vibration forces on aerospace components, friction forces, forces in product testing, vehicle forces on road and test stand, forces on wind tunnel balances.


Accessories

Set of preloading elements, M20x1,5, Type 9451A Wrench adapter Type 9471 for Type 9451A Set of preloading elements M26x0,75 Type 9459 Wrench adapter Type 9477 für Type 9459 3-wire connecting cables Types 1698AA, 1698AB and 1698ACsp Summing box Type 5417

Data sheet 9067C_000-609

Multicomponent Force Sensors

3-Component Force Sensor, 100x100x26 mm, -150 ... 150 kN , 100x100x26, -150 ... 150 kN

Туре 9077С

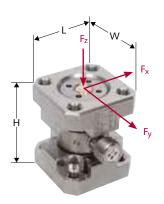
Technical data			Туре 9077С, 9078С, 9076С4
Measuring range	F _x , F _y F _z	kN kN	–75 75 –150 150 Standard mounting with a preload of 350 kN
Calibrated meas. ranges	F _x , F _y Fz Fz	kN kN kN	0 75 0 150 0 500 (not preloaded)
Sensitivity	F _x , F _y F _z	pC/N pC/N	≈–4,2 ≈–2,0
Rigidity	c _x , c _y c _z	kN/μm kN/μm	≈1,8 ≈8
D		mm	105
d		mm	40,5
Н		mm	26
Weight		kg	1,02
Operating temp. range		°C	-40 120
Deg. of protection to IEC/	'EN 60529		IP65 with connected cable Type 1698AA/AB IP67 with connected cable Type 1698ACsp
Connector			V3 neg.

Characteristics

Very wide measuring range, high rigidity, low crosstalk, compact design, robust multi-pole connector. Types 9077C and 9078C differ by the position of their coordinate system,

Type 9076C4: set of four selected sensors Type 9077C/9087C.

Applications


Cutting, impact and recoil forces, dynamic forces on vibrating tables, measurement in wind tunnels, determination of coefficients of friction.

Accessories

3-wire connecting cables Types 1698AA, 1698AB and 1698ACsp Set of preloading elements Type 9455 Wrench adapter Type 9473

Data sheet 9077C_000-610

3-Component Force Link, 25x25x30 mm, -2 ... 2 kN

Туре 9317В

This sensor is preloaded and calibrated.

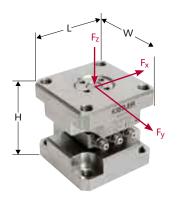
Technical data			Type 9317B
			<i>/</i>
Measuring range	F _x , F _y	kN	-11
	Fz	kN	-2 2
Calibrated meas. ranges	F _x , F _y	kN	0 0,06
			0 0,6
	Fz	kN	0 0,2
			02
Max. moments	M _{x,y}	N∙m	-5/5
Sensitivity	F _x , F _y	pC/N	≈–26
,	Fz	pC/N	≈–11
Natural frequency	f _n (x), f _n (y)	kHz	≈5
	f _n (z)	kHz	≈21
LxWxH		mm	25x25x30
Weight		g	85
Operating temp. range		°C	-50 80
Deg. of protection to IEC/E	EN 60529		IP65 with connected cable Type
Connector			M8x0,75, 3-pole neg.

Characteristics

Very wide measuring range, high rigidity, low crosstalk, easy mount-ing, multi-pole connector.

Applications

Cutting and impact forces, determination of coefficients of friction.


Accessories

Connecting cables Types 1693A... and 1694A...

Data sheet 9317B_000-464

Multicomponent Force Sensors

3-Component Force Link, 42x42x42 mm, -5 ... 5 kN

Туре 9327А

These sensors are preloaded and calibrated.

Technical data			Туре 9327А, 9328А
Measuring range	F _x , F _y	kN	-2,5 2,5
	Fz	kN	-5 5
Calibrated meas. ranges	F _x , F _y	kN	0 0,125
			0 1,25
	Fz	kN	0 0,5
			0 5
Max. moments	M _{x,y}	N∙m	-14 / 14
Sensitivity	F _x , F _v	pC/N	≈–7,9
	Fz	pC/N	≈–3,8
Natural frequency	f _n (x), f _n (y)	kHz	≈3,3
	f _n (z)	kHz	≈11,5
LxWxH		mm	42x42x42
Weight		g	390
Operating temp. range		°C	-50 80
Deg. of protection to IEC/	'EN 60529		IP65 with connected cable
Connector			3 x KIAG 10-32 neg.
			č

Characteristics

Very wide measuring range, high rigidity, low crosstalk, easy mounting, Types 9327A and 9328A differ by the position of their coordinate system.

Applications


Cutting and impact forces, dynamic forces on vibrating tables, determination of coefficients of friction.

Accessories

Connecting cable Type 1631C...

Data sheet 9327A_000-167

3-Component Force Link, 55x55x60 mm, -30 ... 30 kN

Туре 9347С

These sensors are preloaded and calibrated.

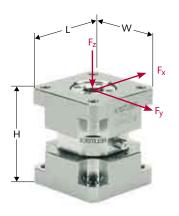
Technical data			Туре 9347С, 9348С
Measuring range	F _x , F _y F _z	kN kN	–15 15 –30 30
Calibrated meas. ranges	F _x , F _y	kN	0 0,5 / 0 5 (force application point 10 mm below surface of cover plate)
	Fz	kN	0 30 / 0 3 (force applied concentrically)
Max. moments	$M_{x,y,z}$ ($F_z = 0$)	N∙m	–150 / 150
Sensitivity	F _x , F _y F _z	pC/N pC/N	≈–7,9 ≈–3,8
Natural frequency	f _n (x), f _n (y) f _n (z)	kHz kHz	≈3,6 ≈10
LxWxH		mm	55x55x60
Weight		kg	1
Operating temp. range		°C	-40 80
Deg. of protection to IEC/I	EN 60529		IP65 with connected cable Type 1698AA, 1698AB IP67 with connected cable Type 1698ACsp
Connector			V3 neg.

Characteristics

Accurate measurement irrespective of force application point, wide frequency range, easy mounting, sealed stainless sensor case, robust multi-pole connector.

Applications

Cutting forces during machining, impact forces in crash tests, rocket engine recoil forces, vibration forces on aerospace components, friction forces, forces in product testing, vehicle forces on road and test stand, forces on wind tunnel balances.


Accessories

3-wire connecting cables Types 1698AA, 1698AB and 1698ACsp Summing box Type 5417

Data sheet 9347C_000-604

Multicomponent Force Sensors

3-Component Force Link, 80x80x90 mm, -60 ... 60 kN

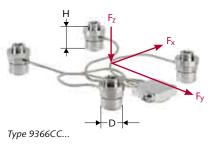
Technical data Туре 9367С -30 ... 30 Measuring range kΝ F_x, F_y kΝ -60 ... 60 F_z Calibrated meas. ranges F_x, F_y kΝ 0 ... 1 0 ... 10 F_{z} kΝ 0...6 0 ... 60 M_x,y -500 / 500 Max. moments N∙m pC/N Sensitivity F_x, F_y ≈–7,6 pC/N ≈–3,9 F_z Natural frequency $f_n(x), f_n(y)$ kHz ≈2,4 ected cable Type 1698AB ed cable

Туре 9367С

This sensor is preloaded and calibrated.

	f _n (z)	kHz	≈6
LxWxH		mm	80x80x90
Weight		kg	3
Operating temp. range		°C	-40 80
Deg. of protection to IE	C/EN 60529		IP65 with conne IP67 with welde
Connector			V3 neg.
Characteristics		lications	

Accurate measurement irrespective of force application point, wide frequency range, easy mounting, sealed stainless sensor case, robust multi-pole connector.


Cutting forces during machining, impact forces in crash tests, rocket engine recoil forces, vibration forces on aerospace components, friction forces, forces in product testing, vehicle forces on road and test stand, forces on wind tunnel balances.

Accessories

3-wire connecting cables Types 1698AA, 1698AB and 1698ACsp Summing box Type 5417

Data sheet 9367C_000-613

Multicomponent Force Link Set, Ø72 mm, -25 ... 60 kN

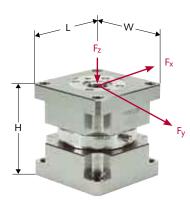
Technical data		Туре 9366СС
Measuring range mounted F _x , F _y on 300x300x35 mm F _z steel cover plate	kN kN	-25 25 -25 60
Calibrated meas. rangesFx, Fymounted onFz300x300x35 mm steel cover plate	kN kN	0 2,5 / 0 25 0 6 / 0 60
Sensitivity F _x , F _y F _z	pC/N pC/N	≈–7,8 ≈–3,7
Natural frequency f _n	Hz	≈200 ≈1 500 depending on size and material of cover plate
D	mm	72
Н	mm	89,3
Weight	kg	7
Operating temp. range	°C	-20 70
Deg. of protection to IEC/EN 60529		IP67
Connector		Fischer flange, 9-pole neg.

Characteristics

Ready-to-connect set of four force links for user assembly of multicomponent force plates, cover plate size 300x300 to 1 000x700, integral connecting cables and summing box, easy mounting, reliable, flexible, corrosion-resistant, splash and cutting fluid proof.

Applications

Dynamic and quasistatic measurement of the three orthogonal components of a force, cutting, punching, pressing, impact and wheel forces, recoil forces, bearing forces on machine foundations.


Accessories

Connecting cables Type 1687B5..., 1677A5...

Data sheet 9366C_000-681

Multicomponent Force Sensors

3-Component Force Link, 120x120x125 mm, -150 ... 150 kN

Туре 9377С

Technical data			Туре 9377С, 9378С
Measuring range	F _x , F _y F _z	kN kN	–75 75 –150 150
Calibrated meas. ranges	F _x , F _y	kN	0 3 0 30
	Fz	kN	0 15 0 150
Max. moments	M _{x,y}	N∙m	-2 000 / 2 000
Sensitivity	F _x , F _y F _z	pC/N pC/N	≈–3,9 ≈–2
Natural frequency	f _n (x), f _n (y) f _n (z)	kHz kHz	≈1,7 ≈3,8
LxWxH		mm	120x120x125
Weight		kg	10,5
Operating temp. range		°C	-40 80
Deg. of protection to IEC.	/EN 60529		IP65 with connected cable Type 1698AB IP67 with welded cable
Connector			V3 neg.

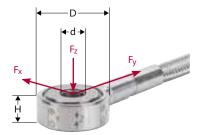
Characteristics

Very wide measuring range, high rigidity, low crosstalk, easy mounting, multi-pole connector.

Applications

Cutting, impact and recoil forces, dynamic forces on vibrating tables, determination of coefficients of friction.

Accessories


3-wire connecting cables Types 1698AA, 1698AB and 1698ACsp Connecting cable Type 1631C...

Data sheet 9377C_000-612

VarioComp 2/3-Component Force Sensor, ø25 mm, -5 ... 5 kN

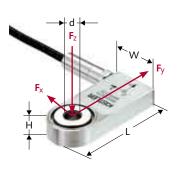
Type 9601A21...

Туре 9601А31...

Technical data			Туре 9601А21, 9601А31, 9601А32
Measuring range	F _x , F _y F _z	kN kN	–2,5 2,5 –5 5 Standard mounting with a preload of 25 kN
Calibrated meas. range	s		not calibrated
Sensitivity	F _x , F _y F _z	pC/N pC/N	≈–3,2 ≈–3,8
Rigidity	C _x , C _y Cz	kN/μm kN/μm	≈0,2 ≈1,3
D		mm	25
d		mm	8,1
Н		mm	10
Weight		g	24
Operating temp. range		°C	-50 120
Deg. of protection to I	EC/EN 60529		IP65 with PUR sheath IP67 with steel sheath
Connector			Mini Coax neg. / KIAG 10-32 pos.

Characteristics

Compact and robust design, integral cable with steel or PUR sheath, also available as multicomponent force sensor with selection of measuring axes in the y and z or x, y and z direction. Types 9601A31 and 9601A32 differ by the position of their coordinate system.


Applications Monitoring of machinery and tools.

Accessories Preloading key Type 9463

Data sheet 9601A_000-172

Multicomponent Force Sensors

3-Component Force Sensor with Integral Charge Amplifier, -5 ... 5 kN

Туре 9602АЗ...

integral Charge Amplinel, -5 5		
Technical data		Туре 9602АЗ
Number of measuring ranges		2 (switchable 5:1)
Measuring range adjustment		fixed
Measuring ranges F _x , F _y	kN	-0,5 0,5 -2,5 2,5
Fz	kN	-1 1
		-5 5
		Standard mounting with a preload of 25 kN
Calibrated meas. ranges		not calibrated
Sensitivity F _x , F _y	mV/N	≈2
		≈10
Fz	mV/N	≈1
		≈5
Rigidity c _x , c _y	kN/µm	≈0,25
C _Z	kN/μm	≈1,25
Output signal	V	±5
LxWxH	mm	57x25x10
d	mm	8,1
Weight	g	30
Operating temp. range	°C	0 60
Deg. of protection to IEC/EN 60529		IP67
Connector		Fischer 7-pole pos. D102 or integral cable

Process monitoring on metal cut-

ting machine tools, presses (joining

and assembly processes) and form-

Type 9255B

-20 ... 20

-10 ... 40

0 ... 2

0 ... 20

0 ... 4 0 ... 40

≈–8

≈2

52

0 ... 70

≈3,3

260x260x95

IP67 with connected cable

Fischer flange 9-pole neg.

≈–3,7

Characteristics

Integral charge amplifier electronics, two measuring ranges, sturdy, compact design, straight or rightangled connector outlet.

Accessories

Connecting cable Type 1783A... Preloading key Type 9463 Preloading disk Type 9408

Data sheet 9602A_000-173

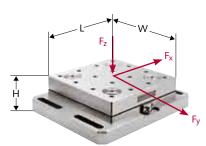
Multicomponent Dynamometer with 260x260 mm Cover Plate, -10 ... 40 kN

Sensitivity

LxWxH

Weight

Natural frequency


Operating temp. range

Deg. of protection to IEC/EN 60529

Technical data

Measuring range

Calibrated meas. ranges

Туре 9255В

This sensor is calibrated and ready for measurement.

Characteristics

Connector

Sturdy dynamometer for heavy machining. The connection between the base plate and the machine table can be reinforced by also attaching the dynamometer at the center of the four sensor arrangement. This increases the natural frequency of the measurement configuration.

Applications

Applications

ing machines.

kΝ

kΝ

kΝ

kΝ

pC/N

. pC/N

kHz

kHz

mm

kg

°C

F_x, F_y

F_x, F_v

 F_x , F_y

 $\begin{array}{l} f_n(x), \ f_n(y) \\ f_n(z) \end{array}$

F7

 ${\sf F}_{\sf Z}$

F₇

Dynamic and quasistatic measurement of the three orthogonal components of a force. Measurement of cutting forces on larger workpieces, punching and pressing forces, bearing forces on machine foundations, recoil forces.

Accessories

Connecting cables Type 1687B5 (3-comp.) Type 1689B5 (6-comp)

Data sheet 9255B_000-148

Multicomponent Force Sensors

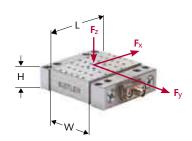
CompactDyn: Multicomponent Dynamometer up to 1 kN

	Technical data			Туре 9254
F _z	Measuring range	F _x , F _y F _z	N N	±500 ±1 000
Fx Fx	Calibrated meas. ranges	F _x , F _y F _z	N N	±0 5 ±0 10
	Sensitivity	F _x , F _z Fy	pC/N pC/N	≈–8,1 ≈–4,3
Fy	Natural frequency	f _n (x) f _n (y) f _n (z)	kHz kHz kHz	≈2 ≈3 ≈1,8
	L		mm	150
Туре 9254	W		mm	105
	Н			32
	Weight kg			5,1
	Operating temp. range		°C	0 70
	Deg. of protection to IEC/	EN 60529		IP67 with connected cable
	Connector			Fischer 9-pole neg.

Characteristics

This dynamometers slim profile and low temperature error makes it ideal for measurements on precision machinery. It can be mounted on the table of the machine tool with screws or claws or simply using a magnetic table.

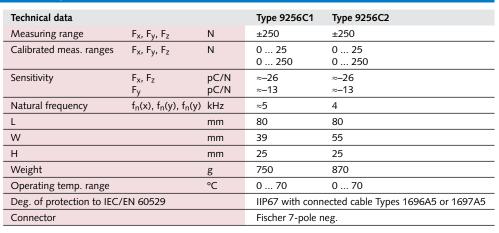
Applications


Dynamic and quasistatic measurement of the 3 orthogonal components of a force, measurement of cutting forces involved in superfinishing (milling and grinding).

Accessories

Connecting cables Types 1687B5/1689B5 (3-comp.) Types 1677A5/1679A5 (6-comp.)

Data sheet 9254_000-147


MiniDyn: Multicomponent Dynamometer up to 250 N

This sensor is calibrated and

ready for measurement.

Type 9256C2

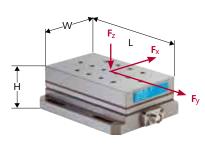
This sensor is calibrated and ready for measurement.

Characteristics

The dynamometer with the smallest mounting dimensions. The cover plate is manufactured from titanium to achieve natural frequencies in excess of 5 kHz in all three force directions. A sensitivity three times that of quartz dynamometers allows reliable measurement of minute process forces.

Applications

Dynamic and quasistatic measurement of the 3 orthogonal components of a force, measurement of cutting forces involved in superfinishing, wafer cutting, grinding of hard drive read heads, diamond turning, high-speed machining, ultra-precision machining of hard and brittle materials


Accessories

Connecting cables Type 1697A5 (3-comp.) Type 1696A5 (5-comp.) Steel toolholder Type 9402

Data sheet 9256C_000-484

Multicomponent Force Sensors

Multicomponent Dynamometer with 100x170 Cover Plate, -5 ... 5 kN

Туре 9257В

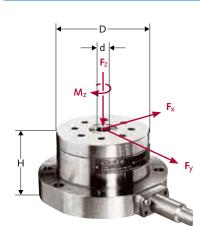
Technical data			Туре 9257В
Measuring range	F _x , F _y , F _z	kN	-5 5
Calibrated meas. ranges	F _x , F _y Fz	kN kN	0 0,05 / 0 0,5 / 0 5 0 0,1 / 0 1 / 0 10
Sensitivity	F _x , F _y Fz	pC/N pC/N	≈–7,5 ≈–3,7
Natural frequency	f _n (x), f _n (y) f _n (z)	kHz kHz	≈2,3 ≈3,5
L		mm	170
W		mm	100
Н		mm	60
Weight		kg	7,3
Operating temp. range		°C	0 70
Deg. of protection to IEC/	'EN 60529		IP67 with connected cable
Connector			Fischer flange 9-pole neg.

This sensor is calibrated and ready for measurement.

С	haracteristi	cs

All-purpose dynamometer. The practical size and ideal measuring range for a wide variety of applications have made Type 9257B dynamometers a best seller.

Applications


Dynamic and quasistatic measurement of the 3 orthogonal components of a force. Measurement of cutting forces involved in turning, milling, grinding and other processes. Measurements on wind tunnel models.

Accessories

Connecting cables Types 1687B5/1689B5 (3-comp.) Types 1677A5/1679A5 (6-comp.) Toolholder Type 9403

Data sheet 9257B_000-151

4-Component Dynamometer, Fx, Fy, Fz and Mz

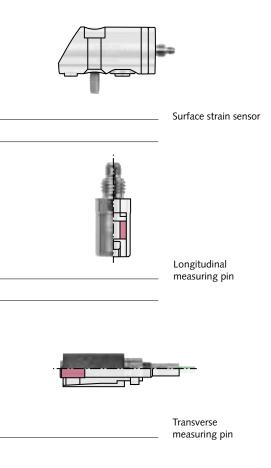
Туре 9272

Technical data			Туре 9272
Measuring range	F _x , F _y F _z Mz	kN kN N∙m	-5 5 -5 20 -200 200
Calibrated meas. ranges	F _x , F _y F _z M _z	kN kN N∙m	0 0,5 0 5 0 2 0 20 0200 / 020 0 200 / 0 20
Sensitivity	F _x , F _y F _z M _z	pC/N pC/N pC/N∙m	≈–7,8 ≈–3,5 ≈–160
Natural frequency	f _n (x), f _n (y) f _n (z) f _n (M _{z)}	kHz kHz kHz	≈4 ≈7 ≈5
D		mm	100
d		mm	15
Н		mm	70
Weight		kg	4,2
Operating temp. range		°C	0 70
Deg. of protection to IEC/	EN 60529		IP67 with connected cable
Connector			Fischer flange 9-pole neg.

This sensor is calibrated and ready for measurement.

Characteristics

The stationary 4-component dynamometer for cutting force measurement during drilling processes. The central hole through the dynamometer accommodates, for example, shafts for torque measurement.


Applications

Measurement of cutting forces during drilling processes or torque measurement.

Accessories

Connecting cables Type 1677A5 and Type 1679A5 (4-comp.) Toolholder Type 9404

Data sheet 9272_000-153

Strain Sensors

A force acting as a load on a component results in a mechanical stress of

```
\sigma = \frac{F}{A}
```

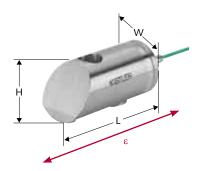
and a strain of

 $\varepsilon = \frac{\Delta I}{I_0}$

Strain is a relative change in the length of the component under load and therefore dimensionless.

In most applications strain measurement is used for indirect force measurement on or in components. This has the advantage that mounting of the sensor does not significantly affect the component. Unlike sensors used for direct force measurement, strain sensors are rather small and their strain measurement signal depends on the force application point.

The strain is measured on the component surface or directly inside the structure. The piezoelectric **surface strain sen**- **sor** is attached to the outside surface of the component at a suitable point with just a single screw. This mounting screw ensures force transmission between the two contact areas of the sensor and the component through static friction. Changes in the measured length of the component are transmitted to the elastic sensor element, where they act as a shear force. In complex structures, a suitable point for mounting surface sensors has to be determined by trial and error.


Strain sensors in the form of **measuring pins** can also be mounted inside structures in a cylindrical hole at a location offering optimal conditions. As strains occur in different directions, Kistler offers sensors for measuring strains longitudinal or transverse to the mounting hole. To allow both tensile and compression force measurement, the sensors are mechanically preloaded inside the mounting hole.

Piezoelectric strain sensors achieve ultrahigh sensitivity compared with familiar strain gage technology.

Strain Sensors

Surface Strain Sensor, -800 ... 800 µɛ

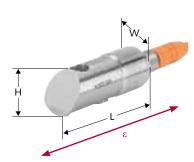
Technical data		Туре 9237А
Measuring range	με	-800 800
Calibrated meas. range*	με	0 500
Sensitivity*	pC/με	≈-24
L	mm	51,5
W	mm	25,4
Н	mm	26,9
Weight	g	190
Operating temp. range	°C	-30 120
Deg. of protection to IEC/	'EN 60529	IP65 with connected cable IP67 for Type 9237A20 with special cable
Connector		KIAG 10-32 neg.

Туре 9237А...

Characteristics

This robust strain sensor is ideal for measuring dynamic and quasistatic forces on stationary or moving machine parts. For this purpose it uses force-proportional strain on machinery or structural surfaces for indirect force measurement.

Applications


Monitoring of machinery such as mechanical presses to prevent overloads; quality assurance on production lines for joining processes such as wobble riveting, clinching and resistance spot welding; monitoring of machine tools for timely detection of potential tool breakage or tool collision.

Accessories

Highly insulated connecting cables with KIAGO-32 pos. connector Types 1983A..., 1939A... and 1979A... . High-temperature connecting cable in sealed sheath Type 1915A1

Data sheet 9237A_000-662

Surface Strain Transmitter, -800 ... 800 µɛ

Туре 9238А...

M The parameters of this transmitter can be configured quickly and easily with the ManuWare PC program.

Technical data Type 9238A... -800 ... 800 Measuring range με 0 ... 50 Calibrated meas. ranges* με 0...500 Output signal ± 10 (programmable $\pm 1 \dots 10$) V L 68,1 mm W mm 26,9 Н mm 27,5 Weight 190 g -10 ... 70 Operating temp. range °C Deg. of protection to IEC/EN 60529 IP67 Connector M12x1,8 8-pole shielded Serial interface RS-232C

Characteristics

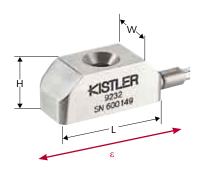
This robust strain sensor with integral, fully digital charge amplifier is ideal for measuring dynamic and quasistatic forces on stationary or moving machine parts. For this purpose it uses force-proportional strain on machine or structural surfaces for indirect force measurement.

Applications

Monitoring of machinery such as mechanical presses to prevent overloads; quality assurance on production lines for joining processes such as wobble riveting, clinching and resistance spot welding; monitoring of machine tools for timely detection of potential tool breakage or tool collision.

Accessories

Connecting cable Type 1787A5 Connecting cable Type 1789A5 Intermediate service cable Type 1787A-1


Data sheet 9238A_000-663

*Values only apply to the test setup used at Kistler.

For accurate force measurement the sensor must be recalibrated after mounting.

Strain Sensors

Surface Strain Sensor, High-Sensitivity, –600 ... 600 $\mu\epsilon$

Technical data Туре 9232А -600 ... 600 Measuring range με Calibrated meas. ranges* 0...-300 με 0...300 Sensitivity* ≈–80 ρC/με Natural frequency kHz ≥12 40 L mm W 17 mm Н 15 mm Weight 50 g Operating temp. range °C 0 ... 70 Deg. of protection to IEC/EN 60529 IP65 with connected cable Connector KIAG 10-32 neg.

Туре 9232А

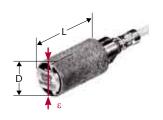
Characteristics

Very high sensitivity, extremely low acceleration sensitivity, also effective for measurements on moving parts, overload protected, optional ground-isolated design.

Applications

Indirect force measurement on mechanical presses, machine tools, high-speed production machinery, assembly machinery.

Accessories


Connecting cables Types 1979A..., 1635C...

Data sheet 9232A_000-137

*Values only apply to the test setup used at Kistler. For accurate force measurement the sensor must be recalibrated after mounting.

Strain Sensors

Transverse Measuring Pin for Mounting in Structures, -500 ... 500 με

Туре 9241С...

Technical data		Туре 9241С
Measuring range	με	-500 500
Calibrated meas. ranges*	με	0 200
Sensitivity*	ρC/με	≈–15
D	mm	10
L	mm	18
Weight	g	38
Operating temp. range	°C	-40 200
Deg. of protection to IEC/	EN 60529	IP64
Connector		optional KIAG 10-32 pos. Mini Coax neg.

Characteristics

Preloading allows measurement of compression and tensile forces, can be secured in mounting bore in required direction and at necessary depth, integral cable, easy mounting, ground-isolated.

Applications

Indirect measurement of forces in structures of machines, tools, etc., for industrial monitoring.

Accessories

Mounting tool Type 1393B...

Data sheet 9241C_000-140

Quartz Longitudinal Measuring Pin, M10, for Mounting in Structures, -1 500 ... 1 500 $\mu\epsilon$

Туре 9243В...

Technical data		Туре 9243В
Measuring range	με	–1 500 1 500
Calibrated meas. ranges*	με	0 350
Sensitivity*	ρC/με	≈–15
Natural frequency	kHz	>110
D	mm	8
L	mm	13
Hollow preloading bolt		M10x1
Weight	g	4,8 (without cable and preloading bolt)
Operating temp. range	°C	-40 200
Deg. of protection to IEC/E	EN 60529	IP64 with connected cable IP67 with cable Type 1983AB and welded connector
Connector		M4x0,35 neg.

Characteristics

Measures forces of almost any size indirectly though strain, preloaded for measurement of tensile as well as compression forces, can be mounted at virtually any depth in the structure.

Applications

Indirect measurement of forces in structures of machines, tools, etc., for industrial monitoring purposes, monitoring of tie bar forces in injection molding machines.

Accessories

Connecting cables Types 1923A..., 1645C... and 1983AB..., Force distribution cap Type 9841, Ground isolation set Type 9487A

Data sheet 9243B_000-538

*Values only apply to the test setup used at Kistler.

For accurate force measurement the sensor must be recalibrated after mounting.

Strain Sensors

High-Temperature Longitudinal Measuring Pin, M10, up to 350 °C, wit Metal-Sheathed Cable, –1 500 ... 1 500 με

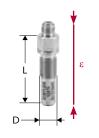
Туре 9245В...

Technical data		Туре 9245В2, 9245ВЗ
Measuring range µ	31	–1 500 1 500
Calibrated meas. ranges* µ	31	0 350
Sensitivity* p	οC/με	≈–15 / ≈15
Natural frequency k	Hz	>50
D n	nm	M10x1
L n	nm	29
Weight g	5	36
Operating temp. range	С	-40 350
Deg. of protection to IEC/EN	60529	IP65 with connected cable
Connector		Fischer KE 102 neg.

Characteristics

Very wide operating temperature range available with separable Kapton steel-sheathed cable.

Applications


Melt pressure measurement in injection molding machine cylinders, strain measurement in hot machine structures.

Accessories

Extension cable Type 1661A End finishing tool Type 1300A21 Connecting cable Type 1951A...

Data sheet 9245B_000-142

Miniature Longitudinal Measuring Pin, -1 400 ... 1 400 $\mu\epsilon$, for Installation in Structures

Туре 9247А...

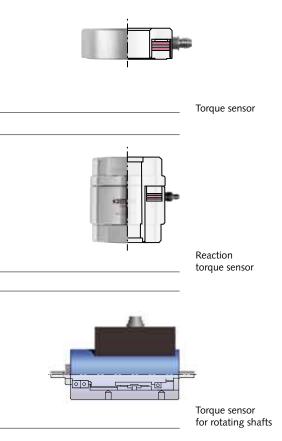
Technical data		Туре 9247А
Measuring range	με	–1 400 1 400
Calibrated meas. ranges		not calibrated
Sensitivity*	ρC/με	≈–8,6
D	mm	M5x0,5
L	mm	23,7
Weight	g	2,5
Operating temp. range	°C	-40 200
Deg. of protection to IEC/E	N 60529	IP65 with connected cable IP67 with cable Type 1983AB and welded connector
Connector		M4x0,35 neg.

Characteristics

Very small sensor for tensile and compression measurement, indirect measurement of forces into the meganewton range, can be mounted at virtually any depth in the structure.

Applications

Sheet metal forming, connection and joining technology, plastic injection molding machines and assembly processes.


Accessories

Connecting cables Types 1926A... and 1929A... Mounting wrench Type 1300A9 Finishing tool Type 1300A79 Special tap Type 1357A

Data sheet 9247A_000-143

*Values only apply to the test setup used at Kistler.

For accurate force measurement the sensor must be recalibrated after mounting.

Torque sensors

Kistler sensors for measuring torque on rotating shafts are based on the strain gage principle. They offer maximum accuracy, very high rigidity and high thermal stability. These measuring shafts transmit power and measurement signals without contact. Some types even operate without mechanical bearings for complete freedom from wear as well as extreme accuracy. Their noncontact digital signal transmission from rotor to stator, integral signal conditioning, normalized analog and frequency outputs and wealth of interfaces make them much easier to integrate into existing test systems.

Piezoelectric sensors mounted under high mechanical preload are used as reaction torque sensors. Each of a number of shear-sensitive quartz disks is positioned with its shear axis tangential to a circle in which the disks are arranged. The configuration and the shape of the sensors are similar to those of single-component load washers. And this type of the sensor likewise has to be mounted under high mechanical preload to allow transmission of shear forces through static friction. Torque acting on the sensor generates tangential shear stresses in the quartz disks. As all of the disks are connected electrically in parallel, the total output signal is proportional to the acting torque.

Kistler reaction torque sensors are characterized by being mounted between a preloading bolt and a nut under high axial preload. This ensures the torque is transmitted to the shear-sensitive quartz disks through static friction. Their high resolution allows measurement of minute dynamic changes in high torques. These Kistler reaction torque sensors are calibrated prior to delivery and are ready for immediate use. A central hole accommodates shafts.

The construction of **torque dynamometers** is essentially identical to that of reaction torque sensors. A larger footprint and a cover plate with a flexible hole pattern allow easy adaptation to suit a variety of applications. These sensors are mainly used for calibrating torque wrenches.

Torque Sensors

Torque Sensor, –5 ... 5 N⋅m to –200 ... 200 N⋅m

Technical data		Туре 9039	Туре 9049	Туре 9069
Measuring range	N∙m	-5 5	-25 25	-200 200
Calibrated meas. ranges	N∙m	0 –5 0 –0,5 0 0,5 0 5	0 –25 0 –2,5 0 2,5 0 25	0200 020 0 20 0 200
Sensitivity	pC/N·m	≈–600	≈–250	≈–175
Rigidity	N∙m/µrad	≈7	≈12	≈50
Preloading force	kN	15	25	120
D	mm	28,5	36	52
d	mm	13	17	26,5
Н	mm	11	12	15
Weight	g	38	61	150

Туре 9039

Operating temp. range °C	–150 150
Deg. of protection to IEC/EN 60529	IP65 with connected cable IP67 with cable Type 1983AD and welded connector
Connector	KIAG 10-32 neg.

Characteristics

Wide measuring range, compact design, very high rigidity, very low threshold, sturdy, welded construction.

Applications

Monitoring of torques of pneumatic screwdrivers, testing of friction clutches, measurement of motor starting torques and variations in synchronization.

Accessories

Connecting cable Type 1631C... Preloading elements Type 9420A...

Data sheet 9039_000-111

Torque Sensors

Reaction Torque Sensor, -1 ... 1 N·m to -1 000 ... 1 000 N·m

Technical data		Туре 9329А	Туре 9339А	Туре 9349А	Туре 9369А
Measuring range	N∙m	–1 1	–10 10	-25 25	-200 200
Calibrated meas. ranges	N∙m	0 –1 0 –0,1 0 0,1 0 1	010 01 0 1 0 10	0 –25 0 –2,5 0 2,5 0 25	0200 020 0 20 0 200
Sensitivity	pC/N⋅m	≈–2 170	≈–460	≈–230	≈–130
D	mm	20	30	36	54
Н	mm	26	34	42	60
Weight	g	50	137	243	800
Operating temp. range	°C	-20 80	–40 120	–40 120	–40 120

Туре 9329А

Technical data		Туре 9389А
Measuring range	N∙m	-1 000 1 000
Calibrated meas. ranges	N∙m	01 000 0100 0 100 0 1 000
Sensitivity	pC/N·m	≈–100
D	mm	100
Н	mm	130
Weight	g	6 720
Operating temp. range	°C	-40 120

General technical data

Deg. of protection to IEC/EN 60529	IP65 with connected cable IP67 with cable Type 1983AD and welded connector
Connector	KIAG 10-32 neg.

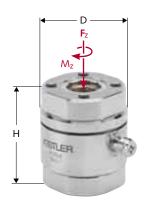
Characteristics

Compact, ready-to-mount reaction torque sensor, highly adaptable, centering seat.

Applications

Measurement of torque about the sensor axis, torque setting and testing of screw connections, calibration of manual torque wrenches, testing of spring torsion, measurements on friction clutches and electric motors, product testing of rotary controls and switches.

Accessories Mounting flange Type 9580A...


0 0 71

Data sheet 9329A_000-463

These sensors are preloaded and calibrated.

Torque Sensors

2-Component Sensor, F_z, M_z

Туре 9345В

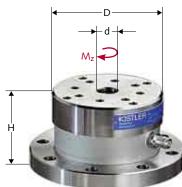
These sensors are preloaded and calibrated.

Technical data		Туре 9345В	Туре 9365В
Measuring range Fz	kN	–10 10	-20 20
Calibrated meas. ranges	kN	0 1 0 10	0 2 0 20
Sensitivity F _z	pC/N	≈–3,7	≈–3,6
Rigidity c _z	kN/µm	≈1,7	≈2,8
Measuring range Mz	N∙m	-25 25	-200 200
Calibrated meas. ranges	N∙m	025 02,5 0 2,5 0 25	0200 020 0 20 0 200
Sensitivity Mz	pC/N·m	≈–200	≈–140
Rigidity c (calculated)	N·m/µrad	≈0,19	≈0,92
D	mm	39	56,5
Н	mm	42	60
Weight	g	267	834
Operating temp. range	°C	-40 120	-40 120
Deg. of protection to IEC	/EN 60529	IP65 with connected cable	IP65 with connected cable
Connector		M8x0,75 3-pole neg.	V3 neg.

Characteristics

Reaction torque sensor with option of measurement of an additional tensile/compression acting force.

Applications


Examination of the correlation between drilling torque and rupture force for PCBs, tightening torque and stripping forces in screw connections and similar processes.

Accessories

Connecting cables Types 1693A..., 1694A..., 1695A... and 1698A...

Data sheet 9345B_000-630

Torque Dynamometer, -200 ... 200 N·m

Туре 9275

This sensor is calibrated and ready for measurement.

Technical data Туре 9275 -200 ... 200 Measuring range N∙m 0 ... –200 0 ... –20 Calibrated meas. ranges N∙m 0 ... 20 0 ... 200 Sensitivity pC/N·m ≈–170 Natural frequency kHz ≈3,5 D mm 100 d 18,4 mm н 70 mm Weight kg 2,9 0 ... 70 Operating temp. range °C Deg. of protection to IEC/EN 60529 IP65 with connected cable TNC neg. Connector

Characteristics

Precise, extremely high sensitivity, compact, sturdy design, non-rotating.

Applications

Testing of torque wrenches, testing of spring torsion, ergonomic measurements, testing of screw connections, measurement of starting torque of small and stepper motors.

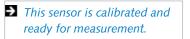
Accessories

Connecting cable Type 1609B...

Data sheet 9275_000-154

Torque Sensors

Torque Dynamometer, −5 ... 5 N·m up to −25 ... 25 N·m



Туре 9277А25

Technical data		Туре 9277А5	Туре 9277А25
Measuring range	N∙m	-5 5	-25 25
Calibrated meas. ranges	N∙m	05 00,5 0 0,5 0 5	0 –25 0 –2,5 0 2,5 0 25
Sensitivity	pC/N∙m	≈–600	≈–250
Natural frequency	kHz	≈10	≈15

General technical data

D mm	78	
d mm	8,5	
H mm	60	
Weight g	1 700	
Operating temp. range °C	0 70	
Deg. of protection to IEC/EN 60529	IP65 with connected cable	
Connector	TNC neg.	

Characteristics

Precise, extremely high sensitivity, high natural frequency, compact, sturdy design, non-rotating.

Applications

Testing of torque wrenches, testing of spring torsion, ergonomic measurements, testing of screw connections, measurement of starting torque of small and stepper motors.

Accessories

Connecting cable Type 1609B...

Data sheet 9277A_000-155

Measuring

Rotating Torque Sensors

Slip-Ring Rotating Torque Sensor, 2 up to 1 000 N·m

Type 4501A...

Characteristics

Connector

Technical data

Rated torque Mnom

Speed measurement

Operating temp. range

Maximum torque

Accuracy class

Rated value

Rated speed

Case

L

W

н

N∙m

%

mV/V

rpm

mm

mm

mm

°C

pulses/rev.

All-purpose rotating torque sensor, compact, broad variety of shaft connections.

Deg. of protection to IEC/EN 60529

Applications

Intended specifically for use in screw driving assembly. Typical applications include testing stationary screw spindles and measuring torque applied by hand or power tools for screw driving. For brief, intermittent measurement of torque at low speeds.

Binder, 6- or 12-pole

Туре 4501А...

0,2

2 x 360

≤3 000

5 ... 50

44 ... 73

28 ... 73

52 ... 90

IP40

1,5 x rated torque

±1 ... 2 (depending on model)

hard-anodized aluminum

2 / 6 / 10 / 12 / 20 / 25 / 50 /63 / 100 / 160 / 200 / 500 / 1 000

Accessories

Connector, 6-pole Type KSM000822 Connector, 12-pole Type KSM000703 Connecting cables Types KSM071860-5, KSM103820-5 and KSM183150-5 Measuring amplifier for strain gage sensors Type 4701A... see data sheet for other accessories

Data sheet 4501A_000-596

Mini-Smart Rotating Torque Sensor, 0,5 up to 1 000 N·m

Туре 4502А...

Technical data Type 4502A... Rated torque Mnom N∙m 0,5 / 1 / 2 / 5 / 6 / 10 / 12 / 18 / 20 / 50 / 63 / 100 / 150 / 160 / 200 / 250 / 300 / 500 / 1 000 Maximum torque 1,5 x rated torque Accuracy class % 0,2 Output signal at Mnom VDC (rated value) ±0...5 Speed measurement pulses/rev. 2 x 360 or 60 Rated speed ≤12 000 rpm Operating temp. range °C 10 ... 60 Case hard-anodized aluminum L mm 44 ... 73 W 28 ... 73 mm н 52 ... 90 mm Deg. of protection to IEC/EN 60529 IP40 Connector Binder, 12-pole

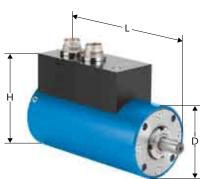
Characteristics

All-purpose rotating torque sensor with non-contact signal transmission, integral electronic measuring system and high interference immunity. Compact, broad variety of shaft connections.

Applications

Suitable for dynamic measurement of tightening and unscrewing torques in screw driving and assembly as well as quality control in manufacturing and the laboratory. Suitable for continuous use, for example in process monitoring.

Accessories


Connector, 12-pole, Type KSM000703 Connecting cable Types KSM124970-5 Couplings Types 2301A... to 2303A... see data sheet for other accessories

Data sheet 4502A_000-597

Measuring

Rotating Torque Sensors

Dual-Range Sensor with Non-Contact Transmission, 0,2 up to 5 000 N·m

Technical data Туре 4503А... Rated torque Mnom N∙m 0,2 / 0,5 / 1 / 2 / 5 / 10 / 20 / 50 / 100 / 200 / 500 / 1 000 / 2 000 / 5 000 Maximum torque 1,5 x rated torque Alternating torque 0,7 x rated torque Accuracy class % 0,1 Linearity error <±0,1 Opt. C: <±0,05 including hysteresis % FSO ±0 ... 5 or ±0 ... 10 Output signal at Mnom VDC or 100 ±40 and RS-232C (rated value) kHz Speed measurement 60 or 2 x 360 pulses/rev. Rated speed ≤50 000 rpm °C 10 ... 60 Operating temp. range Case hard-anodized aluminum or stainless steel (depending on model) L 113 ... 137 mm D mm 58 ... 148 Н mm 83 ... 178 Deg. of protection to IEC/EN 60529 IP40 Connector Binder, 7- or 12-pole

Туре 4503А...

Characteristics

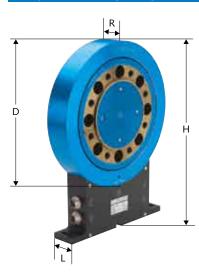
Sensor for two separately calibrated measuring ranges (optional). Integral electronic measuring system, maximum accuracy and extremely high speed ranges, digital signal processing. A singlerange version is also available.

Applications

Universal application in the development laboratory, in manufacturing and in quality assurance.

Accessories

Connector, 7-pole Type KSM000517 Connector, 12-pole Type KSM000703 Connecting cables Types KSM124970-5 and KSM219710-5 Sensor tool Type 4706A... Couplings Types 2301A... to 2303A... see data sheet


for other accessories

Data sheet 4503A_000-595

Measuring

Rotating Torque Sensors

Torque Measuring Flange - Slim, Robust, Bearingless, High Accuracy, 50 up to 5 000 N·m

Туре 4504А...

Technical data		Туре 4504А
Rated torque Mnom	N∙m	50 / 100 / 200 / 500 / 1 000 / 2 000 / 3 000 / 5 000
Maximum torque		2 x rated torque
Alternating torque		1 x rated torque
Accuracy class	%	0,1
Linearity error including hysteresis	% FSO	<±0,1 Opt. C: <±0,05
Output signal at M _{nom} (rated value)	VDC kHz	±0 10 or 10 ±5, 60 ±20, 100 ±40 and RS-232C
Speed measurement	pulses/rev.	60 or 2 x 180 2 x 3 600 or 2 x 128 2 x 5 120 (depending on model)
Rated speed	rpm	≤15 000
Operating temp. range	°C	10 60
Case		hard-anodized aluminum
L	mm	40,5 64
D	mm	172 311
Н	mm	243,5 382
R	mm	25 64
Deg. of protection to IEC/E	N 60529	IP54
Connector		Binder, 7-, 8- and 12-pole

Characteristics

Torque measuring flange based on the strain gage principle. Integral digital measurement conditioning system produces analog or digital output signals, which are transmitted without contact. Rotor runs in the stator ring without bearings and is free of wear.

Applications

The extremely narrow profile makes this measuring flange ideal for test stand applications including engines, gearboxes, rollers, electric motors and pumps.

Accessories

Connector, 7-pole Type KSM000517 Connector, 12-pole Type KSM000703 Connecting cable Type KSM219710-5 SensorTool Type 4706A... Couplings Types 2301A... see data sheet for other accessories

Data sheet 4504A_000-598

Signal conditioning is essential in measuring mechanical quantities such as force, strain or torque. **Charge amplifiers** convert the charge output by a piezoelectric sensor into a proportional voltage; whereas **strain gage amplifiers** boost the small measurement voltage signal. These voltage signals are then also used as input variables for monitoring and control processes.

To meet practical industrial requirements, Kistler offers a wide range of charge amplifiers with different designs, numbers of measuring channels, precision, measuring ranges, sensitivity, bandwidth, filter characteristics, scaling options and signal processing.

Charge Amplifiers for Piezoelectric Sensors

Single-Channel Charge Amplifier

Technical data	Туре 5015А		
Number of channels	1		
Measuring range adjustment	continuously variable		
Measuring range FS pC	±2 2 200 000		
Frequency range (-3 dB) kHz	≈0 200		
Output signal V	±2 10		
Supply voltage VAC	115, 230		
Input signal Type/connector	piezoelectric, piezotron (voltage) / BNC neg.		
Deg. of protection to IEC/EN 60529	IP40		
Interface	optional RS-232C RS-232C and IEEE-488		
Case	optional 19" cassette for rack mounting desktop unit with support bracket 19" cassette with panel mounting set		
Other features			
	 Voltage input with supply voltage for "Piezotron sensors" Display of peak values Display of mechanical measurands 		

Туре 5015А...

Characteristics

Charge meter with LCD display and menu-driven operation; all important settings are visible at a glance, direct display of measurand as well as maximum, minimum and mean values, LED status displays; measurement range continuously variable, long-medium-short time constants, flexible adjustment of high- and low-pass filters, overload display, automatic zero monitoring and correction, remote control via digital inputs, RS-232C serial interface for parameter configuration and transfer of measurement data.

Applications

Measurement of mechanical quantities (pressure, force, acceleration) with piezoelectric sensors.

Accessories

RS-232C null modem cable, I = 5 m, D-Sub 9-pole pos. / D-Sub 9-pole neg. Type 1200A27

PC-link cable, RS-232C cable, I = 3 m, D-Sub 25-pole. pos. / D-Sub 9-pole neg. Type 1465A3

D-Sub adapter, D-Sub 9-pole pos. / D-Sub 25-pole neg. Type 1479.

Data sheet 5015A_000-297

Charge Amplifiers for Piezoelectric Sensors

Multichannel Charge Amplifier for Multicomponent Force Measurement

Туре 5070А...

Technical data		5070Ax0x	xx	5070Ax1xxx	5070Ax2xxx
Number of channels		4		8	8 with 6-component summing calculator
General technical data					
Measuring range adjustm	ient	continuou	sly variab	le	
Measuring ranges FS	рС	optional		200 000 600 000	
Frequency range (-3 dB)	kHz	≈0 45			
Output signal	V	±10			
Supply voltage	VAC	100 240)		
Input signal	Type/connector	piezoelect	ric / optic		g. 9-pole neg.
Deg. of protection to IEC	/EN 60529	IP40			
Interface		optional	RS-232 RS-232	C C and IEEE-488	
Case		optional	desktop	sette for rack mo o unit with suppo sette with panel	rt bracket
Other features					
		 Display o Display o 		llues nical measurands	

Characteristics

This amplifier is ideal for multicomponent force-torque measurement with piezoelectric dynamometers or force plates.

Applications

The 4-channel amplifier is effective for measuring cutting forces with Kistler dynamometers. The 8-channel amplifier is suitable for 6-component force-torque measurement in laboratories, research and development.

Accessories

RS-232C null modem cable, I = 5 m, D-Sub 9-pole pos. / D-Sub 9-pole neg. Type 1200A27 Connecting cable for signal outputs from charge amp to data acquisition card, I = 2 m, D-Sub 15-pole pos. / D-Sub 37-pole neg. Type 1500B15 Connecting cable for signal outputs from 6-component summing calculator to data acquisition card, I = 2 m, D-Sub 15-pole pos. / D-Sub 37-pole neg. Type 1500A7 Inductive proximity switch Type 2233.

Data sheet 5070A_000-485

Charge Amplifiers for Piezoelectric Sensors

ICAM Charge Amplifier with Wide Measuring Range and Peak Memory

Туре 5073А4...

Technical data	Туре 5073А1	Туре 5073	3A2	Туре 5073АЗ	Туре 5073А4.
Number of channels	1	2		3	4
Technical data	Туре 5073А5				
Number of channels	1 (charges of 4	inputs on o	one ch	annel summed)	
General technical data					
Number of measuring ranges	2 (switchable)				
Measuring range adjustment	continuously va	riable			
Measuring range 1 FS pC Measuring range 2 FS pC	±100 1 000 (±100 1 000 (
Frequenzy range (–3 dB) kHz	≈0 20 (±10 0 ≈0 2 (±1 000				
Output signal V	±10				
Supply voltage VDC	18 30				
Input signal Type/connector	piezoelectric / c	optional	BNC I	0	
Deg. of protection to IEC/EN 60529) (BNC) 5 (TNC)			
Interface	RS-232C				
Other features					
	 Peak memory Adjustable out Low-pass filter 				

M The parameters of this unit can be configured quickly and easily with the ManuWare PC program.

Characteristics

All-purpose industrial charge amplifier with rugged metal case; very wide variable measuring range, two independent, externally switchable measuring ranges, integral peak memory for each channel; PLC connection possible.

Applications

Monitoring, control and optimization of machinery and industrial processes.

Accessories

RS-232C null modem cable, I = 5 m, D-Sub 9-pole pos. / D-Sub 9-pole neg. Type 1200A27 Cable D-Sub / 15-pole neg. with flying leads one end. Type 1500A41...

Data sheet 5073A_000-524

Charge Amplifiers for Piezoelectric Sensors

In-Line Charge Amplifier

Туре 5027А...

echnical data		Туре 5027	7A		
Number of channels		1			
Measuring range adjustrr	nent	continuou	ısly variable		
Measuring ranges FS pC		optional	±150 4 800 ±4 800 145 000 ±145 000 450 000	(Type 5027A1) (Type 5027A2) (Type 5027A3)	
Frequency range (–3 dB)	kHz	≈0 10			
Dutput signal	V	±5			
Supply voltage	VDC	10 36			
nput signal	Type/connector	piezoelect	ric / KIAG 10-32 neg.		
Deg. of protection to IEC/EN 60529		IP65			
Other features					
		Calibrated	l as required		

Characteristics

Wide measuring range, scaled for chosen measuring range if required, compact design, user adjustable FS range.

Applications

Conditioning of measurement signals of piezoelectric sensors. Flange plate for easy positioning anywhere on machine frame.

Accessories

Remote ControlMonitor for power supply and calibration Type 5825A1 Calibration device Type Z16401 Mounting bracket Type 1413 8-pole round connector Type 1500A57 Aluminum cap for round connector Type 1433 Mounting wrench Type 1300A59

Data sheet 5027A_000-299

MiniAmp Miniature Charge Amplifier

Туре 5030А...

Туре 5030А... Technical data Number of channels 1 Number of measuring ranges 2 (switchable 10:1) Measuring range adjustment fixed pC Measuring ranges FS optional ±100 / ±1 000 ±1 000 / ±10 000 ±10 000 / ±100 000 Frequency range (-3 dB) kHz ≈0 ... 10 Output signal V ±10 VDC Supply voltage 18 ... 30 Type/connector piezoelectric / KIAG 10-32 neg. Input signal Deg. of protection to IEC/EN 60529 IP65

Characteristics

Single-channel miniature charge amplifier with rugged, dust- and waterproof aluminum case, wide measuring range, two externally switchable fixed measuring ranges (10:1), connection to PLC possible.

Applications

Conditioning of measurement signals of piezoelectric sensors. Light yet rugged design for industrial use mounted on moving machine parts.

Accessories

Connecting cable Lumberg M12, 8-pole neg. to remote ControlMonitor Type 5825A1 Type 1700A66 Connecting cable for PLC Type 1787A5.

Data sheet 5030A_000-523

Charge Amplifiers for Piezoelectric Sensors

Charge Amplifier for Small Charges

Туре 5037В...

Technical data	Туре 5037В1 Туре 5037В3ҮЗ9
Number of channels	1 3
Technical data	
Measuring range adjustment	continuously variable
Measuring range FS pC	±20 650 000
Frequency range (-3 dB) kHz	≈0 30 (<±200 000 pC)
Output signal V	±10
Supply voltage VDC	±15
Input signal Type/connector	piezoelectric / optional BNC neg. TNC neg. KIAG 10-32 neg. M13x1 fitting for protective sheath Fischer connector DBEE 103A015-1
Deg. of protection to IEC/EN 60529	optional IP60 (BNC) IP65 (TNC, KIAG 10-32) IP67 (M13x1 fitting with protective sheath)
Other features	
	Semiconductor rather than reed relay reset (Y39)

Rugged, sealed plastic case with different connection options; also available with ranges calibrated for specific sensors. Applications Conditioning of measurement signals of piezoelectric sensors. With its rugged design, the amplifier is ideal for in-line use in machine monitoring systems Accessories none Data sheet 5037B_000-302

Charge Amplifier for Control Panel Mounting, with Digital Range Adjustment

Туре 5041Е...

Туре 5041Е
1
digital adjustment
±100 99 000
≈0 50
±10
optional ±15 24
piezoelectric / BNC neg.
IP40

Characteristics

Suitable for front panel mounting, scaling with thumbwheel switch, LED for "Operate" and "Overload".

Applications

Ideal for laboratory applications and frequent changes of sensor.

Accessories none

Data sheet 5041E_000-305

Charge Amplifiers for Piezoelectric Sensors

Charge Amplifier on Eurocard, for Multichannel 19" Racks

Туре 5058А...

or	Multichannel 19" Racks		
	Technical data	Туре 5058А	
	Number of channels	1	
	Number of measuring ranges	5 (switchable, decade resistor)	
	Measuring range adjustment	continuously variable / digital	
	Measuring ranges FS pC	±10 100 ±100 1 000 ±1 000 10 000 ±10 000 100 000 ±100 000 1 000 000	
	Frequency range –3 dB, without internal filter kHz –3 dB, without internal filter kHz (integral LP filter as standard: 10 kHz)	≈0 80 (range: < ±100 000 pC) ≈0 15 (all ranges)	
	Output signal V	±10	
	Supply voltage VDC	±15	
	Input signal Type/connector	piezoelectric / Mini Coax, neg.	
	Deg. of protection to IEC/EN 60529	IP40	
	Other features		
		 Programmable measuring range Manual operation Peak memory Low-pass filter Electrical isolation 	

Characteristics

Five measuring ranges, positive and negative peak memories, low-pass filter as standard, "track/ hold" and "track/peak" toggle, manual operation or external control.

Applications

For use in industrial instrumentation, particularly for multichannel systems and for mounting in 19" racks.

Accessories

M 105 series, multipole connector, 52 + 2 poles, rows a + c Wire wrap 13 mm, Art. no 5.512.123.

Data sheet 5058A_000-308

Strain Gage Amplifiers

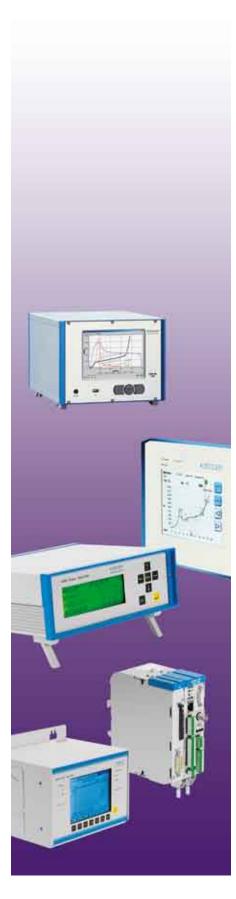
Measuring Amplifier for Strain Gage Sensors and Resistive Travel Sensors

Version A

Technical data	Туре 4701А
Number of channels	1
Input signal strain gage mV/V	Version A: approx 1,5 Version B: approx 1,0 (0,5 3,0, full or half bridge, max. bridge input resistance 500 Ω)
resistiv V	Version C: input 0 5 (input resistance 1 5 $k\Omega$)
Cutoff frequency (–3 dB) kHz	1
Output signal V	±5 or ±10
Supply voltage VDC	24 non-stabilized (±10 %)
Input signal Type/connector	Strain gage with opt. of cable gland with soldering terminals (version A) 6-pole connector (version B)
Deg. of protection to IEC/EN 60529	Version A with cable glands: IP54 Versions B and C with connectors: IP40

Characteristics

Industrial measuring amplifier with rugged metal case. Gain and zero adjustment set with fixed resistors and potentiometers.


Applications

Designed for panel mounting in industrial applications. It is an all-purpose solution for strain gage sensors and resistive displacement sensors. Suitable for torque sensors Туре 4501А...

Accessories Connecting cable Type KSM071860-5 Connecting cable Type KSM103820-5

Data sheet 4701A_000-621

Version B and C

Transparency of assembly and testing processes can be achieved by measuring force and/or torque.

As a function of time, displacement or angle is an ideal method of monitoring, controlling and documenting these processes. **ControlMonitors** (brand name: CoMo[®]) can be used to display, evaluate and document the resulting curves. Parameters for monitoring and evaluation functions can be freely selected within a wide range. Their configuration takes into account the specific requirements of different processing methods.

The DMF-P series of digital measuring systems for joining processes supplement the range of products for monitoring automatic assembly, particularly in conjunction with electromechanical NC joining modules.

In addition to the CoMo and DMF-P families of evaluation units, Kistler offers DynoWare, the multipurpose operatorfriendly software for force measurement with dynamometers, single-component or multicomponent force sensors. DynoWare® provides technicians with an on-line display of measured curves as well as with useful calculation and graphics functions for signal analysis. In addition to straightforward configuration of the most important measuring instruments, the software supports operator-specific documentation of the measuring process as well as the storage of configuration and measurement data.

The **ManuWare** PC software enables quick and easy configuration of the parameters of force and strain transmitters as well as the all-purpose ICAM charge amplifier.

SensorTool, another PC software, enables the operator to process sensor and measurement data of torque sensors or supply and evaluation systems. This includes setting device parameters, numerical and graphical display of measurands, evaluation of measurements and measurement curves, reading and display of sensor and equipment data, and definition of speed output pulses.

TraceControl PC software is used to configure and control monitoring equipment of the DMF-P family with the aid of convenient graphics functions. It allows reading of equipment controller outputs and simulation of digital control by PLC, and supports system setup, production, and quality assurance.

Control and Monitoring Devices

CoMo Logic[®] ControlMonitor y(t)

Туре 5875А...

)		
Technical data		Туре 5875А
Number of channels	y/t	1
Measuring range adjustment		continuously variable
Measuring ranges FS	pC	optional ±50 5 000 ±500 50 000 ±1 000 100 000 ±5 000 500 000
Sampling rate	kHz	10
Frequency range (-3 dB)	kHz	≈0 4
Output signal (monitor)	V	±10
Supply voltage	VDC	18 30
Input signal	Type/connector	piezoelectric / BNC neg.
Deg. of protection to IEC/EN 60)529	IP40
Interface		RS-232C
Case		optional 19" cassette for rack mounting desktop unit with support bracket 19" cassette with panel mounting set
Other features		
		 LCD graphics display 3 real-time thresholds Memory for 8 parameter sets Flashloader

Characteristics

CoMo Logic is a single-channel y(t) ControlMonitor with graphical display, three real-time thresholds and elementary post-cycle curve analysis. The monitor is operated with front panel controls or with a PLC via digital I/Os. An analog monitor output with scaled sensor signal is available for external data acquisition. Eight parameter sets make it easy to switch between different operating modes and applications.

Applications

CoMo Logic is designed for monitoring time-dependent measurands in production processes. It is particularly suitable for monitoring force/time characteristics of manual and automated assembly and test processes.

Accessories

RS-232C null modem cable I = 5 m, D-Sub 9-pole pos. / D-Sub 9-pole neg. Type 1200A27 Connecting cable for monitor output, 2 x 2 mm connector / BNC pos. Type 1700A57

Data sheet 5875A_000-492

Control and Monitoring Devices

CoMo Net® ControlMonitor y(x) for Top-Hat Rail Mounting

Туре 5863А14

Technical data		Ture 59(2)/4
Technical data		Туре 5863А1
Number of channels	y/t, y/x	1
Measuring range adjustment		continuously variable
Measuring range FS	рС V	±100 1 000 000
	w mV/V	±0,005 10 0,25 40
Sampling rate	kHz	10
Frequency range (-3 dB)	kHz	≈0 3
Output signal (monitor)	V	±10
Supply voltage	VDC	18 30
Input signal	Type/connector	piezoelectric / BNC neg., strain gage / Phoenix 3,5 mm, piezoresistive / Phoenix 3,5 mm, voltage / Phoenix 3,5 mm, incremental encoder / D-Sub 9-pole pos. absolute encoder (SSI) / D-Sub 9-pole pos.
Deg. of protection to IEC/EN 60529		IP40
Interface		 Ethernet TCP/IP RS-232C 6 digital inputs 6 digital outputs
Options		
		 Profibus DP Incremental/absolute encoder Compact flash memory expansion module
Other features		
		 12 freely combinable evaluation functions Horizontal and vertical real-time thresholds Cycle control through displacement Memory for storing 20 curves Memory for 16 parameter sets Web server Flashloader Software service for fast data export Transfer formats: Q-DAS, CSV, XML, text and HTM

Characteristics

Single-channel ControlMonitor for DIN rail mounting, operates on a 24 V industrial supply, 6 PLC-compatible digital inputs and outputs enable the system to be integrated into a machine control system, networkable via TCP/IP and Ethernet, RS-232C interface for connecting equipment such as a barcode reader, operation (parameter configuration and visualization) by means of either a standard web browser via Ethernet on a PC or with the Kistler Browser and web terminal with Windows CE[®]. The web server integrated in CoMo Net, controls HTML pages for operating purposes, data server controls the exchange of process data with the outside world, remote diagnostics and remote maintenance capability. Access to the various menu levels is password-controlled for operators, supervisors or service personnel, intuitive operation for fast and safe setting up of the measuring process.

Applications

In-process visualization, monitoring, evaluation and classification of industrial processes like joining, separating, primary forming, re-shaping and testing. Recording of interdependent measurands – force and torque as a function of displacement, time or angle and evaluation of their functional relationship, for instance for reject separation, reworking or rerunning to different tolerances.

Accessories

RS-232C null modem cable, I = 5 m, D-Sub 9-pole pos. / D-Sub 9-pole neg. Type 1200A27 Control unit with 5,7" color touch screen display Type 5629A2

Data sheet 5863A_000-444

Control and Monitoring Devices

CoMo View[®] ControlMonitor y(x) with Color Touch Screen Display

Туре 5863А2...

Type 5863A2... in desktop case Type 5745A...

with Color Touch Screen	Display	
Technical data		Туре 5863А2
Number of channels	y/t, y/x	1
Measuring range adjustment		continuously variable
Measuring range FS	pC V mV/V	±100 1 000 000 ±0,005 10 0,25 40
Sampling rate	kHz	10
Frequency range (-3 dB)	kHz	≈0 3
Output signal (monitor)	V	±10
Supply voltage	VDC	18 30
Input signal	Type/connector	piezoelectric / BNC neg., strain gage / Phoenix 3,5 mm, piezoresistive / Phoenix 3,5 mm, voltage / Phoenix 3,5 mm, incremental encoder / D-Sub 9-pole pos. absolute encoder (SSI) / D-Sub 9-pole pos.
Deg. of protection to IEC/EN 60529		IP40 IP65 (front in panel mounting)
Interface		 Ethernet TCP/IP RS-232C 6 digital inputs 6 digital outputs
Display		5,7"-STN color touch screen display
Options		
		 Profibus DP Incremental/absolute encoder Desktop case set
Other features		
		 12 freely combinable evaluation functions Horizontal and vertical real-time thresholds Cycle control through displacement Memory for 20 measurement curves 16 parameter sets Flash Memory expansion module Web server Flashloader Software service for fast data export Transfer formats: Q-DAS, CSV, XML, text and HTML Visualization of other CoMo Nets on the network

Characteristics

Single-channel ControlMonitor with integral 5,7" color touch screen display (320x240 pixels), operates on a 24 V industrial supply, 6 PLC-compatible digital inputs and outputs enable the system to be integrated into a machine control system, networkable via TCP/IP and Ethernet, RS-232C interface for connecting equipment such as a barcode reader, parameter configuration by means of a standard web browser via Ethernet on a PC or with the Kistler Browser and web terminal with Windows CE®. The web server integrated in CoMo Net controls HTML pages for operating purposes, visualization via PC or web terminal and using integral color display. Data server controls the exchange of process data with the outside world, remote diagnostics and remote maintenance capability, access to the various menu levels is password-controlled for operators, supervisors or service personnel, intuitive operation for fast and safe setting up of the measuring process.

Applications

In-process visualization, monitoring, evaluation and classification of industrial processes like joining, separating, primary forming, re-shaping and testing. Recording of interdependent measurands – force and torque as a function of displacement, time or angle and evaluation of their functional relationship, for instance for reject separation, reworking or allocation of production results to different tolerances.

Accessories

RS-232C null modem cable, I = 5 m, D-Sub 9-pole pos. /D-Sub 9-pole neg. Type 1200A27 Desktop case Type 5745A... Plug-in power pack Type 5781A1 matching desktop case Type 5745A21 30W plug-in power pack Type 5779A2

Data sheet 5863A_000-519

Control and Monitoring Devices

Control Unit with 5,7 " Color Touch Screen Display

Type 5692A2

Technical data Type 5629A2 Display 5,7" STN color touch screen monitor (320x240 pixels) Interface Ethernet 10-Base T (electrically isolated) °C Operating temp. range 0 ... 45 208 Length mm Width mm 172 Height mm 30 Other features Fixed mounting on wall or pivot mounting on wall or

machinery

Characteristics

The control unit with the 5,7" color touch screen display can be used for configuring CoMo Net ControlMonitor Type 5863A... and for displaying the force-displacement curve and evaluation results. 5,7" STN color touch screen display; rugged IP65 construction; wall or pivot mounting; for CoMo Net operation and process visualization.

Applications

The control unit is Ethernet (TCP/ IP) networkable and can be detached from CoMo Net measuring unit for use as a standalone terminal. The rugged IP65 mechanical construction of the control unit makes it suitable for use in tough industrial environments. The terminal is supplied with power via the round connector on the side. An angle connector is included for this purpose.

Accessories

Power supply 100 ... 240 VAC; 50 ... 60 Hz, 24 VDC; 3 A; 14-pole pos. Binder connector 423 Type 5781A3

Data sheet 5629A_000-682

Control and Monitoring Devices

CoMo Sys® ControlMonitor y(x)*, Multichannel, with Integral PC

Туре 5885А...

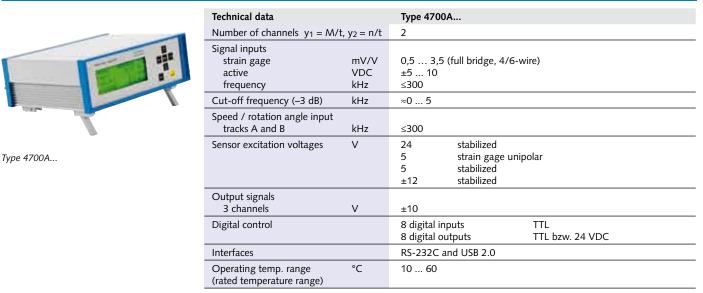
Fechnical data		Туре 5885А
Number of channels	y/t, y/x	optional 1 2 (42 TE-Case) 1 4 (63 TE-Case) 1 7 (84 TE-Case)
Measuring range adjustment		continuously variable within range defined by hardware
Measuring ranges FS	pC V mV/V	±100 1 000 000 ±0,005 10 0,25 40
Sampling rate	kHz	≈10
Frequency range (–3 dB)	kHz	≈0 3
Output signal (monitor)	V	±10
Supply voltage	VAC	100 230
Input signal	Type/connector	piezoelectric / BNC neg., strain gage / Phoenix 3,5 mm, piezoresistive / Phoenix 3,5 mm, voltage / Phoenix 3,5 mm, incremental encoder / D-Sub 9-pole pos. absolute encoder (SSI) / D-Sub 9-pole pos.
Interface		 Ethernet TPC/IP RS-232C 6 digital inputs 6 digital outputs
Interfaces on integral PC		PS/2 for external keyboard 2 x USB 1 x RS-232C (COM2) 1 x parallel (LPT) 1 x VGA output for additional external monitor 1 x Ethernet 10/100 Mbit
Display		6,5" TFT color monitor, 640x480 pixels
Deg. of protection to IEC/EN 60)529	IP40
Other features		
		 Cycle control through displacement thresholds Integral hard disk for data storage Slot for compact flash card Storage of process data in Q-DAS transfer format Wealth of special functions enabled by macro functionality
Options		
		 Profibus DP interface for each measuring channel Incremental/absolute encoder

Characteristics

Multichannel ControlMonitor with integral 6,5 " color display (640x480 pixels). Parameter configuration, visualization and logging of process by means of integral PC with hard disk, (or alternatively FlashDisk), and Windows-based user interface; two USB interfaces, serial and parallel interface, Ethernet port, PC/104 expansion slot. Each measuring channel has 6 digital intputs and outputs, voltage input for displacement sensor, optional Profibus DP interface.

In-process visualization, monitoring, evaluation and classification of industrial processes like joining, separating, re-shaping and testing. Recording of interdependent measurands – force and torque as a function of displacement, time or angle and evaluation of their functional relationship, for instance for reject separation, reworking or re-running to different tolerances.

Applications


Accessories

Potentiometric displacement sensor e.g. Type 2112A75 Connecting cable for displacement sensor e.g. Type KIG 4367A3 (3 m)

*Only available in Germany

Control and Monitoring Devices

CoMo Torque Evaluation Instrument for Torque Sensors

Compatible with SensorTool PC program for parameter configuration and evaluation.

Characteristics

Universal measuring amplifier for connecting passive and active force and torque sensors. Torque/ speed or torque/rotation angle measurements can be evaluated. The unit calculates and displays mechanical power. It also has digital inputs and outputs, min/max peak detection and a measurement curve memory function.

Applications

The unit is ideal for factory instrumentation and in test and laboratory environments.

Accessories

Connecting cable Type KSM185350 for Type 4501A... Q/R, Type KSM185370 for Type 4501A... QA, Type KSM186420 I = 2,5 m for Type 4503... / 4504A... analog, Type KSM186430 I = 2,5 m for Type 4503A... / 4504A... frequency

Data sheet 4700A_000-620

Remote ControlMonitor for Transmitter Actuation

Type 5825A1

Technical data	Туре 5825А1
Number of channels	1
Measuring range adjustment	-
Measuring range V	±10
Sampling rate ms	<2 (>0,5 kHz)
Output signal V	±10
Supply voltage battery VD external VD	
Input signal	8-pole Binder round connector
Deg. of protection to IEC/EN 60529	IP50

Characteristics

Battery-powered handheld terminal, ideal for mobile on-site highprecision data acquisition during high-speed processes. Rugged design for industrial application with impact protection and membrane keypad, large LCD graphics display. Comes with one monitor output and one RS-232C data transmission interface.

Applications

For actuation of different transmitters like Types 9234A..., 9602AA... and 9833B... and charge amplifiers like Types 5030A... and 5027A.... Depending on the electronics, the RCM allows the configuration of basic settings or measuring ranges to suit the application. When used with older electronic equipment, the RCM can act as a power supply or a simple voltmeter.

Accessories

RS-232C null modem cable, I = 5 m, D-Sub 9-pole pos. / D-Sub 9-pole neg. Type 1200A27 Connecting cable Lumberg M12, 8-pole neg., – for connection to Type 9234A... Type 1700A66 Desktop power pack 5.510.220

Data sheet 5825A_000-527

Control and Monitoring Devices

Single-Channel Force-Displacement Unit DMF-P A300 for General Joining and Press-Fitting Processes

Type 4737AWD...

	of Genera	I Joining and Press-Fitting Processes	
Technical data		Туре 4737А	
Number of channels y/t, y/x		1	
Measuring range adjustment for each range	İ	continuously variable	
Measuring range FS	mV/V V pC	±0,25 5 ±0,5 10 ±40 000 1 500 000	
Sampling rate	kHz	5	
Resolution of analog input (automatic scaling to measuring range)	Bit	12	
Output signal (monitor)	V	±10	
Supply voltage	VDC	24 ±10 %	
Input signal Type/ connector		for force (torque optional)/displacement signal strain gage and voltage/Binder 6-pole piezoelectric/BNC incremental/8-pole Binder SSI/D-Sub 9-pole	
Deg. of protection to IEC/EN 60529		IP40 IP54 (wall mounted/panel case)	
Interfaces		Ethernet TPC/IP 2 x RS-232C Profibus DP LPT for HP-compatible printer PS/2 for external keyboard	
Display		5,7" STN monochrome	
Options		 Wall mounted case (bottom cable exit) Desktop or panel case (rear cable exit) Profinet I/O DeviceNet Interbus 16 digital inputs 16 digital outputs 	
Other features			
		 30 freely combinable evaluation functions Horizontal and vertical real-time thresholds Memory for 100 measurement curves Memory for 1 000 joining results 32 parameter sets Integral web server Flashloader, upload/download Data export in CSV, Q-DAS or IP.M. format Remote parameter configuration with TraceControl possible 	

Characteristics

For monitoring joining and pressfitting processes. Developed for use in systems and plants with joining processes. Recording of force curve as a function of displacement or time. Online or offline evaluation (after data storage) depending on type of freely programmable criteria. Data exchange with option of external visualization via Ethernet. Logging of measurement results in CSV or standardized formats such as Q-DAS or I.-P.M. Networked to plant via fieldbus or corresponding control inputs. Configuration and setup on monitoring system with screen or PC via web browser. Clear and simple operator guidance. Integration of user evaluation methods. TraceControl software supports equipment setup, production and quality assurance.

Applications

Monitoring of assembly characteristic with adjustable windows. This allows the operator to define critical parts of the assembly cycle. Monitoring of assembly force, end position, overload and variable windows. In addition, speed of process and gradient of measurement curve can be measured and evaluated.

Accessories

24 V power supply 120 ... 240 V Type KSM028659 24 V power supply 120 ... 240 V with US connector Type KSM028660

Data sheet 4737A_000-684

Control and Monitoring Devices

Multichannel Force-Displacement Unit DMF-P A400 advanced for General Joining and Press-Fitting Processes

Type 4733AWD...

Technical data	Туре 4733А
Number of channels y/x, y/t	2
Adjustment of each measuring range	continuously variable
Measuring range FS mV/V	±0,25 5
V Dq	±0,5 10 ±40 000 1 500 000
Sampling rate for each chan. kHz	5
Resolution of analog input Bit	12
(automatic scaling to measuring range)	12
Output signal for V each channel (monitor)	±10
Supply voltage VDC	24 ±10 %
Input signal Type/ connecto	for force (torque optional)/displacement signal r strain gage and voltage/Binder 6-pole piezoelectric/BNC incremental/Binder 8-pole SSI/D-Sub 9-pole
Deg. of protection to IEC/EN 60529	IP40 IP54 (wall mounted/panel case)
Interfaces	Ethernet TPC/IP 2 x RS-232C Profibus DP LPT for HP-compatible printer PS/2 for external keyboard 16 digital inputs 16 digital outputs
Display	5,7" STN monochrome
Options	 Wall mounted case (bottom cable exit) Desktop or panel case (rear cable exit) Profinet-IO DeviceNet Interbus
Other features	
	 30 freely combinable evaluation functions Horizontal and vertical real-time thresholds Memory for 100 measurement curves Memory for 1 000 joining results 32 parameter sets
General features	
	 Integral web server Flashloader, upload/download Networking of other DMF-Ps via Ethernet Data export in CSV, Q-DAS or IP.M. format Remote parameter configuration with TraceControl possible

Characteristics

For monitoring joining and pressfitting processes. Developed for use in systems and plants with several joining processes requiring mutually independent monitoring. Expansion up to 8 independent channels can be achieved by linking a number of units. Online or offline evaluation (after data storage) depending on type of freely programmable criteria. Data exchange with option of external visualization via Ethernet. Independent operation is an option in extreme cases, mutually independent channels. Logging

of measurement results in CSV or standardized formats such as Q-DAS or I.-P.M. Networking to plant via fieldbus or corresponding control inputs. Configuration and setup on monitoring system with screen or PC with web browser. Integration of user evaluation methods. TraceControl software supports equipment setup, production and quality assurance.

Applications

Monitoring of assembly characteristic with adjustable windows. This allows the operator to define critical parts of the assembly cycle. Monitoring of assembly forces, end position, overload and variable windows. In addition, speed of process and gradient of measurement curve can be measured and evaluated.

Accessories

24 V power supply 120 ... 240 V Type KSM028659 24 V power supply 120 ... 240 V with US connector Type KSM028660

Data sheet 4733A_000-623

Software

ManuWare - PC Tool for Setup of Parameters of Industrial Charge Amplifiers and Transmitters

Technical data

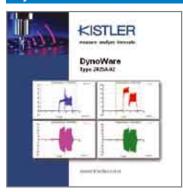
Supported equipment:

Characteristics

Versatile PC tool for configuring parameters of charge amplifiers, force and strain transmitters. Autoscan function provides automatic detection and listing of connected equipment; status of recognized instruments shown; intuitive parameter configuration with dialogs tailored to each particular instrument; a graphical display of the test measurements and auxiliary functions for scaling indirect measurement help the operator set up force measurement applications; the settings of the fully configured devices can be saved on PC.

Applications Test measurements with the supported equipment.

Industrial charge amplifier ICAM Type 5073A...


Transmitters Types 9337A... (force) and 9238A... (strain)

Options None

Accessories None

CD 7.643.035 can be ordered free of charge

DynoWare - Software for Data Acquisition and Evaluation

Characteristics

Simple operation, configuration and control of Kistler measuring instruments via RS-232C or IEEE-488 interface, high-performance graphics, useful signal evaluation and calculation functions, simultaneous recording of up to 8 measuring channels. Is also ideal for acquisition and evaluation of any physical measurands.

Applications

Windows® software for data acquisition and evaluation. All-purpose, operator-friendly software, especially effective for force measurement with dynamometers and single- or multicomponent force sensors. For signal analysis Dyno-Ware provides an online display of measurement curves as well as useful calculation and graphics functions. In addition to easy configuration of the most important measuring instruments, DynoWare supports individual documentation of the measurement process as well as storage of configuration and measurement data.

Options None

Accessories

Data acquisition card CIO-DAS 1602/12 Type 2855A3 Data acquisition card PCIM-DAS 1602/16 Type 2855A4 Data acquisition card PC card DAS 16/16 Type 2855A5 Connecting cable Type 15008B15 Connecting cable Type 15008A67 Connecting cable Type 15008B69 USB - RS-232C converter Type 2867

Data sheet 2825A_000-371

Software

SensorTool – PC Software for Setup and Evaluation of Torque Sensor Technology

Technical data	Туре 4706А
Supported equipment:	Torque sensors Types 4503A and 4504A, CoMo Torque evaluation instrument Type 4700A
Further information	See data sheet

Characteristics

Configuration of instrument parameters; numerical and graphical display of measurands; evaluation of measurement values and measurement curves; reading and display of sensor and instrument data; definition of speed output pulses (magnetoresistive system in the Type 4504A...); measurement value taring; storage of recorded measurement curves in TXT or CSV format; multilingual (German/ English) menu guidance.

Applications Straightforward PC software for processing sensor and measurement data from torque sensors or evaluation systems; numerical and graphical display of all of the involved measurands (torque, speed, rotation angle, mechanical power and rotor temperature of torque sensors) on the PC screen; particularly useful during initial setup, testing or optimization; all relevant sensor data (such as serial number, sensor Type, etc.) can be displayed onscreen for a quick check of the

torque sensors; defined functions can be triggered to test the sensor.

Options None

Accessories None

Data sheet 4706A_000-626

TraceControl – PC Software for Monitoring Units

Technical data	Туре 4735А
Supported equipment:	Type 4734A (model DMF-P A300 NCF) Type 4737A (model DMF-P A300) Type 4733A (model DMF-P A400 advanced)
Further information	See data sheet

Characteristics

Operator-friendly software for connecting monitoring units Type 4734A... model DMF-P A300 NCF, Type 4737... model DMF-P A300 and Type 4733A... model DMF-P A400 advanced to PC; simple, intuitive operation, configuration and control of instrument via Ethernet; remote control of instrument from PC screen (1:1 representation); convenient graphical functions; support for system setup, production and quality assurance; export of configured set point value windows (evaluation ranges) and complete families of curves in image files (JPG, BMP, PNG and GIF), function for adding comments to measurement curve ranges of interest.

Applications

Simplified placement of different measurement curves for easy positioning of target value / set point windows of a monitoring unit; all digital inputs and outputs of the equipment controller can be read or set with a click of the mouse, which allows simulation of digital control by PLC; additional monitoring of measurement process using any PC on the network is possible during production; for quality assurance the not OK (NOK) measurement curves can be quickly filtered and any defects efficiently investigated.

Options None

Accessories None

Data sheet 4735A_000-666

Electromechanical NC Joining Modules

Electromechanical NC joining systems are taking over from the familiar hydraulic presses and conventional joining modules. In addition to environmental, energy, space, installation and maintenance benefits, it is primarily manufacturing criteria that sway the system designer towards an electromechanical system. These include flexibility, exact positioning, extremely high repeatability and accurately defined joining forces.

With its electromechanical NC joining systems Kistler offers a particularly compact, high-precision system for a wide variety of force-displacement monitored press-fitting and joining tasks.

The wealth of alternatives covers the full range of forces up to 300 kN.

NC joining modules with piezoelectric force monitoring

Electromechanical NC joining module NCFT Type 2157A... has a integral piezoelectric force sensor, nminal joining force of 1 kN and selection of measuring ranges of 0,25, 0,5 and 1 kN. Its force range and slenderness make it ideal for precision manufacturing or manual workstations. With their space-saving, gearless, hollowshaft motor and integral piezoelectric force sensor, particularly compact electromechanical NC joining modules NCFH Type 2151B... are designed for nominal joining forces of 10, 30 and 60 kN. They come in different sizes for measuring ranges from 1 ... 60 kN.

NC joining modules with strain gage force monitoring

As electromechanical NC joining modules with integral strain gage sensors for rated joining forces of 100, 200 and 300 kN, Types 2153A... with optional safety brakes cover the higher force ranges.

The slim profile of electromechanical NC joining module NCFS Type 2152A... with integral strain gage sensor and a nominal joining force of 35 kN makes it perfect for closely spaced workstations.

Electromechanical NC Joining Modules

NC Joining Module NCFT with Integral Force Monitoring, Measuring Range 0,25 ... 1 kN

Technical data		Туре 2157А1	Туре 2157А2	Type 2157A3
Nominal joining force	kN	1	1	1
Measuring range 1	kN	0,5	1	1
Measuring range 2	kN	0,25	0,25	0,5

General technical data

General technical data		
Measuring direction		compression/tension
Max. straight line velocity	mm/s	300
Repeatability	mm	0,005
Stroke	mm	100
Weight	kg	5,8
Tool weight	kg	≤5
L	mm	567
Н	mm	60
W	mm	60
Operating temp. range	°C	10 40
Deg. of protection to IEC/E	EN 60529	IP54

Characteristics

NC joining module with integral piezoelectric force sensor for forcedisplacement monitored pressfitting and joining processes with a nominal joining force of 1 kN and measuring ranges of 0,25, 0,5 and 1 kN. Its compact dimensions, slender design and small joining forces are ideal for precision manufacturing of products such as small motors, clocks and watches.

Applications

Suitable for use in automated production plants or manual workstations. Can be mounted horizontally or vertically on machine frame using wall fixings or flanges. The holder on ram allows accurate tool positioning.

Accessories

Servo controller for Type 2157A... IndraDrive 12 A PB Type KSM031534 Servo controller for Type 2157A... with integrated safety option IndraDrive 12A PB S Type KSM032763 Force-displacement measuring system DMF-P A300 NCF Type 4734A.. NCFT motor cable RKL4302 l = 5 m Type KSM031533-5 NCFT feedback cable RKL4200 I = 5 m Type KSM303500-5 NCF SSI displacement cable IndraDrive I = 5 mТуре КЅМ030175-5 NCF IndraDrive data cable I = 5 m Type KSM030164-5 NCF force transmitter cable l = 5 m Type KSM313720-5 NCF F - analog force signal I = 5 mType KSM030176 NCF/ XTE, YTE IndraDrive cable I = 5 m Type KSM314030-5

Data sheet 2157A_000-707

Electromechanical NC Joining Modules

NC Joining Module NCFH with Hollow-Shaft Motor and Integral Force Monitoring, Measuring Ranges 1 ... 60 kN

Size 1 Measuring range 1 ... 10 kN Type 2151B020... to Type 2151B100...

Size 2 Measuring range 15 ... 60 kN Type 2151B30... to Type 2151B60...

	Type 2151B02012001	Type 2151B05012001	Type 2151B05022001
kN	10	10	10
kN	2	5	5
kN	1	1	2
	Type 2151B10012001	Type 2151B10022001	Type 2151B10052001
kN	Type 2151B10012001 10	Type 2151B10022001 10	Type 2151B10052001 10
kN kN	,,	21	21
	kN	kN 2	kN 10 10 kN 2 5

Technical data		Type 2151B30154002	Туре 2151В60154002	Туре 2151В60304002
Nominal joining force	kN	30	60	60
Measuring range 1	kN	30	60	60
Measuring range 2	kN	15	15	30

General technical data		Size 1	Size 2
Measuring direction		compression/tension	compression/tension
L	mm	471	795
Н	mm	100	165
W	mm	100	165
Repeatability	mm	0,01	0,01
Max. straight line velocity	mm/s	300	300
Stroke	mm	200	400
Weight	kg	17	80 87
Tool weight	kg	≤50	≤100
Operating temp. range	°C	10 40	10 40
Deg. of protection to IEC/EI	N 60529	IP54	IP54

Characteristics

NC joining module with integral piezoelectric force sensor with joining forces from 1 ... 60 kN for force-displacement monitored press fitting and joining processes. Due to integral hollow-shaft motor the NCFH is extremely short and suitable for highly dynamic measurement; 2 calibrated switchable force measuring ranges available as standard. Force control; straight line velocity; repeatability <0,01 mm, high measuring accuracy; active deflection compensation system for more accurate positioning, high overload capacity of approximately 150 %; ease of operation.

Applications

Suitable for use as linear actuator for assembly and joining tasks in automated production plants. Can be mounted horizontally or vertically on the machine frame using wall fixings or flanges. The holder on ram allows accurate tool positioning.

Accessories

Servo controller for Type 2151B... 10, 30 kN IndraDrive 54A PB Type KSM030106 Servo controller for Type 2151B... 60 kN IndraDrive 70A PB Type KSM031182 Force-displacement measuring system DMF-P A300 NCF Type 4734A... NCFH motor and feedback cable I = 5 m for size 1 Type KSM301660-5 NCFH motor and feedback cable I = 5 m for size 2 Type KSM307390-5 NCF IndraDrive SSI displacement cable I = 5 mType KSM301750-5 IndraDrive data cable I = 5 mType KSM301640-5 NCF force transmitter cable I = 5 mType KSM313720-5 NCF analog force signal cable I = 5 m KSM301760-5 NCF/ XTE, YTE IndraDrive cable I = 5 m Type KSM314030-5

Data sheet 2151A_000-690

Electromechanical NC Joining Modules

NC Joining Module NCFS with Motor, Gearing and Integral Force Monitoring, Rated Joining Force 35 kN

Technical data		Туре 2152А35450
Nominal joining force	kN	35
Measuring direction		compression/tension
Stroke	mm	450
L ₁	mm	928
Н	mm	86
W	mm	110
А	mm	380
Repeatability	mm	0,01
Max. straight line velocity	mm/s	200
Operating temp. range	°C	10 40
Deg. of protection to IEC/E	N 60529	IP54

Characteristics

NC joining module with integral strain gage force sensor for joining forces up to 35 kN in extremely compact arrangements. The slim design allows closer spacing of individual workstations promoting better synchronization and efficient cycling.

Applications

Suitable for use in automated production plants. Can be mounted horizontally or vertically on the machine frame using flanges. The holder on ram allows accurate tool positioning.

Accessories

Servo controller IndraDrive Type KSM030341 Force-displacement measuring system DMF-P A300 NCF Туре 4734А... NCFS motor cable RKL4309 I = 5 m Type KSM030349-5 NCFS feedback cable RKG4200 l = 5 m Type KSM030350-5 NCF SSI IndraDrive displacement cable l = 5 m Type KSM030175-5 NCF IndraDrive Data cable I = 5 m Type KSM030164-5 NCF Strain gage force cable L = 5 m Type KSM020600-5 NCF F analog force signal cable I = 5 m Type KSM030176 NCF/ XTE, YTE IndraDrive cable I = 5 m Type KSM314030-5

Data sheet 2152A_000-627

Electromechanical NC Joining Modules

NC Joining Module NCFN with opt. Safety Device and Integrated Force Monitoring for Nominal Forces of 30 ... 300 kN

Type 2153A... without safety device

Technical data		Type 2153A030200	Туре 2153А030400	Туре 2153А060200
Nominal joining force	kN	30	30	60
Stroke	mm	200	400	200
L / L*	mm	1 042 / 1 236*	1 242 / 1 436*	1 173 / 1 367*
W	mm	148	148	177
н	mm	150	150	180
Max. straight line velocity	mm/s	250	250	250
Weight	kg	75	95	115
* Dimensions with safety d	levice			
Technical data		Туре 2153А060400	Туре 2153А100200	Туре 2153А100400
Nominal joining force	kN	60	100	100
Stroke	mm	400	200	400
L / L*	mm	1 373 / 1 567*	1 329 / 1 554*	1 529 / 1 754*
W	mm	177	227	227
Н	mm	180	230	230
Max. straight line velocity	mm/s	250	200	200
Weight	kg	140	225	270
* Dimensions with safety d	levice			
Technical data		Туре 2153А200400	Туре 2153А300400	
Technical uata			202	
Nominal joining force	kN	200	300	
	kN mm	200 400	400	
Nominal joining force				
Nominal joining force Stroke	mm	400	400	
Nominal joining force Stroke L / L*	mm mm	400 1 754 / 1 979*	400 1 882 / 2 107*	
Nominal joining force Stroke L / L* W	mm mm mm	400 1 754 / 1 979* 247	400 1 882 / 2 107* 297	
Nominal joining force Stroke L / L* W H	mm mm mm mm	400 1 754 / 1 979* 247 250	400 1 882 / 2 107* 297 300	
Nominal joining force Stroke L / L* W H Max. straight line velocity	mm mm mm mm/s kg	400 1 754 / 1 979* 247 250 140	400 1 882 / 2 107* 297 300 100	
Nominal joining force Stroke L / L* W H Max. straight line velocity Weight	mm mm mm mm/s kg	400 1 754 / 1 979* 247 250 140	400 1 882 / 2 107* 297 300 100	
Nominal joining force Stroke L / L* W H Max. straight line velocity Weight * Dimensions with safety d	mm mm mm mm/s kg	400 1 754 / 1 979* 247 250 140	400 1 882 / 2 107* 297 300 100	
Nominal joining force Stroke L / L* W H Max. straight line velocity Weight * Dimensions with safety d General technical data	mm mm mm mm/s kg	400 1 754 / 1 979* 247 250 140 355	400 1 882 / 2 107* 297 300 100	
Nominal joining force Stroke L / L* W H Max. straight line velocity Weight * Dimensions with safety d General technical data Measuring direction	mm mm mm/s kg levice	400 1 754 / 1 979* 247 250 140 355 compression/tension	400 1 882 / 2 107* 297 300 100	
Nominal joining force Stroke L / L* W H Max. straight line velocity Weight * Dimensions with safety d General technical data Measuring direction Operating temp. range	mm mm mm/s kg levice	400 1 754 / 1 979* 247 250 140 355 compression/tension 10 40	400 1 882 / 2 107* 297 300 100	

Characteristics

NC joining module with integral strain gage force sensor with rated joining forces from 30 ... 300 kN for force-displacement monitored joining processes, particularly including manual workstations with safety brakes, force control, high straight line velocity; repeatability <0,01 mm; high measuring accuracy; active deflection compensation system for more accurate positioning, high overload capacity (approx. 150 %); ease of operation.

Applications

Suitable for use in automated production plants or manual workstations. The module can be mounted horizontally or vertically on the machine frame using wall fixings or flanges. The holder on ram allows accurate tool positioning.

Accessories

NCFN(S) 30 (35) IndraDrive 54 A PB Type KSM030341 NCFN 60/100 kN IndraDrive 70 A PB Type KSM031634 NCFN 200/300 kN IndraDrive 100 A PB Type KSM030757 Force-displacement measuring system DMF-P A300 NCF 4734A... NCFN(S) 30 (35) motor cable RKL4309 l = 5 m Type KSM303490-5 NCFN 60 motor cable RKL4314 I = 5 m Type KSM305640-5 NCFN 100 motor cable RKL4323 I = 5 m Type KSM307530-5 NCFN 200/300 motor cable RKL4329 l = 5 m Type KSM316330-5 NCFN(S) MSK feedback cable RKG4200 l = 5 m Type KSM303500-5 NCF IndraDrive SSI displacement cable l = 5 m

Type KSM301750-5 NCF IndraDrive data cable I = 5m Type KSM301640-5 NCFN(S) strain gage force cable L = 5 m Type KSM206000-5 NCF F IndraDrive analog force signal cable I = 5 m Type KSM301760-5 NCF/ XTE, YTE IndraDrive cable I = 5 m Type KSM314030-5

Data sheet 2153A_000-669

Control and Monitoring Devices

Single-Channel Force-Displacement Measuring System DMF-P A300 NCF for Electromechanical NC Joining Modules

Type 4734AWD...

int Measuring System i		to wer for Electronicentation we soming modules
Technical data		Туре 4734А
Number of channels	y/x	1
Measuring range spread for joining modules with piezo technology	ranges	2
Adjustment of each measuring	ng range	continuously variable
Measuring range FS	mV/V V	±0,25 5 ±0,5 10
Sampling rate	kHz	5
Resolution of analog inputs (automatic scaling to measuring range)	Bit	12
Output signal (monitor)	V	±10
Supply voltage	VDC	24 ±10 %
Input signal	Type/ connector	force signal/Binder 6-pole displacement, incremental/Binder 8-pole displacement SSI/D-Sub 9-pole
Deg. of protection to IEC/EN	60529	IP40 IP54 (wall/panel mounted case)
Interfaces		Ethernet TPC/IP 2 x RS-232C Profibus DP LPT for HP-compatible printer PS/2 for external keyboard 16 digital inputs 16 digital outputs
Display		5,7" STN monochrome
Options		
		 Wall mounted case (bottom cable exit) Desktop or panel mounted case (rear cable exit)
Other features		
		 30 freely combinable evaluation functions Horizontal and vertical real-time thresholds Memory for 100 measurement curves Memory for 1 000 joining results 32 parameter sets Integral web server Flashloader, upload/download Data export in CSV, Q-DAS or IP.M. format Remote parameter configuration with TraceControl possible

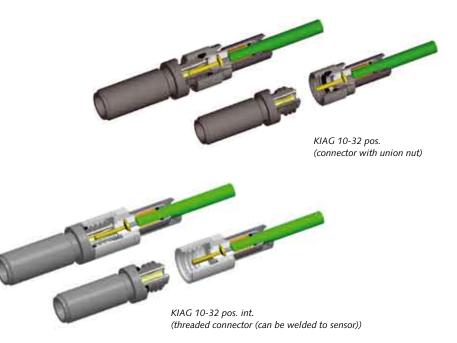
Characteristics

For monitoring joining and pressfitting processes. Developed for use in systems and plants with electromechanical NC joining modules NCFH Type 2151B..., NCFS Type 2152A... and NCFN Type 2153A.... Recording of force curve as a function of displacement or time. Online or offline evaluation (after data storage) depending on type of freely programmable criteria. Management of setpoint records and transmission to Bosch Rexroth servo controller (EcoDrive or IndraDrive) with firmware. Data exchange with option of external visualization via Ethernet. Logging of measurement results in CSV or standardized formats such as Q-DAS or I.-P.M. Neworking to plant via fieldbus or corresponding control inputs. Configuration and

setup on monitoring system with screen or PC with web browser. Clear and simple operator guidance. Characteristics consistent with multichannel system DMF-P A400 advanced Type 4733A... and single-channel system DMF-P A300 Type 4737A... for general joining processes, expansion with additional functions. Integration of user evaluation methods. TraceControl software supports equipment setup, production and quality assurance.

Applications

Monitoring of assembly characteristic with adjustable windows. This allows the operator to define critical part of the assembly cycle. Monitoring of assembly force, end position, overload and variable windows. In addition, speed of process and gradient of measurement curve can be measured and evaluated.


Accessories

24 V power supply (120 ... 240 V) Type KWM028659 24 V power supply (120 ... 240 V) with US connector Type KSM028660

Data sheet 4734A_000-622

Special cables are used to interconnect piezoelectric sensors and charge amplifiers in a similar way to their strain gage counterparts. Original Kistler connecting cables with their high insulation resistance, low level of triboelectricity, low capacitance, high shielding factor and wide temperature range meet all conceivable industrial and laboratory requirements.

Single-Wire Connecting Cables

Connecting Cables for Sensors with KIAG 10-32. neg. Connector

	Technical data	Туре 1631С
(efficiency)	Connector	KIAG 10-32 pos. – BNC pos.
	Length m	0,5 / 1 / 2 / 3 / 5 / 10 / 20 / sp* (L _{min} = 0,1 m / L _{max} = 50 m)
	Diameter mm	2 (PFA)
	Deg. of protection to IEC/EN 6052	<mark>9</mark> IP65 – IP40
	Technical data	Туре 1641А
	Connector	KIAG 10-32 pos. 90° – BNC pos.
	Length m	0,5 / 1 / 2 / 5 / sp* (L _{min} = 0,1 m / L _{max} = 50 m)
	Diameter mm	2 (PFA)
	Deg. of protection to IEC/EN 6052	9 IP40 – IP40
	Technical data	Туре 1633С
in film	Connector	KIAG 10-32 pos. – TNC pos.
	Length m	$0.5 / 1 / 2 / 5 / sp^*$ (L _{min} = 0.1 m / L _{max} = 50 m)
	Diameter mm	2 (PFA)
	Deg. of protection to IEC/EN 6052	
	Technical data	Ture 4/25/
_		Type 1635C
	Connector	KIAG 10-32 pos. – KIAG 10-32 pos.
	Length m	$0.5 / 1 / 2 / 5 / 10 / sp^* (L_{min} = 0.1 m / L_{max} = 30 m)$
	Diameter mm	2 (PFA)
	Deg. of protection to IEC/EN 6052	9 IP65 – IP65
	Technical data	Туре 1957А
	Connector	KIAG 10-32 pos. – KIAG 10-32 pos.
	Length m	$1 / sp^* (L_{min} = 0, 1 m / L_{max} = 10 m)$
	Diameter mm	2,6 (PFA with stainless steel sheath)
	Deg. of protection to IEC/EN 6052	9 IP65 – IP65
	Technical data	Туре 1939А
	Technical data Connector	Type 1939A KIAG 10-32 pos. int. – BNC pos.
	Connector	KIAG 10-32 pos. int. – BNC pos.
	Connector Length m	KIAG 10-32 pos. int. – BNC pos. 1 / 2 / 3 / sp* (L _{min} = 0,1 m / L _{max} = 20 m) 2 (PFA)
	Connector Length m Diameter mm	KIAG 10-32 pos. int. – BNC pos. 1 / 2 / 3 / sp* (L _{min} = 0,1 m / L _{max} = 20 m) 2 (PFA)
	Connector Length m Diameter mm	KIAG 10-32 pos. int. – BNC pos. 1 / 2 / 3 / sp* (L _{min} = 0,1 m / L _{max} = 20 m) 2 (PFA)
	ConnectorLengthmDiametermmDeg. of protection to IEC/EN 6052	KIAG 10-32 pos. int. – BNC pos. 1 / 2 / 3 / sp* (L _{min} = 0,1 m / L _{max} = 20 m) 2 (PFA) 9 IP65 – IP40
	Connector Length m Diameter mm Deg. of protection to IEC/EN 6052	KIAG 10-32 pos. int. – BNC pos. 1 / 2 / 3 / sp* (L _{min} = 0,1 m / L _{max} = 20 m) 2 (PFA) 9 IP65 – IP40 Type 1983AD
	Connector Length m Diameter mm Deg. of protection to IEC/EN 6053 Technical data Connector	KIAG 10-32 pos. int. – BNC pos. 1 / 2 / 3 / sp* (L _{min} = 0,1 m / L _{max} = 20 m) 2 (PFA) 9 IP65 – IP40 Type 1983AD KIAG 10-32 pos. int. – BNC pos.
	ConnectorLengthmDiametermmDeg. of protection to IEC/EN 6053Technical dataConnectorLengthm	KIAG 10-32 pos. int. – BNC pos. 1 / 2 / 3 / sp* (L _{min} = 0,1 m / L _{max} = 20 m) 2 (PFA) 9 IP65 – IP40 Type 1983AD KIAG 10-32 pos. int. – BNC pos. 2 / 5 / sp* (L _{min} = 0,1 m / L _{max} = 5 m) 2 (Viton [®])
	ConnectorLengthmDiametermmDeg. of protection to IEC/EN 6052Technical dataConnectorLengthmDiametermm	KIAG 10-32 pos. int. – BNC pos. 1 / 2 / 3 / sp* (L _{min} = 0,1 m / L _{max} = 20 m) 2 (PFA) 9 IP65 – IP40 Type 1983AD KIAG 10-32 pos. int. – BNC pos. 2 / 5 / sp* (L _{min} = 0,1 m / L _{max} = 5 m) 2 (Viton [®])
	ConnectorLengthmDiametermmDeg. of protection to IEC/EN 6052Technical dataConnectorLengthmDiametermm	KIAG 10-32 pos. int. – BNC pos. 1 / 2 / 3 / sp* (L _{min} = 0,1 m / L _{max} = 20 m) 2 (PFA) 9 IP65 – IP40 Type 1983AD KIAG 10-32 pos. int. – BNC pos. 2 / 5 / sp* (L _{min} = 0,1 m / L _{max} = 5 m) 2 (Viton®) 9 IP65 threaded connector – IP40
	ConnectorLengthmDiametermmDeg. of protection to IEC/EN 6052Technical dataConnectorLengthmDiametermm	KIAG 10-32 pos. int. – BNC pos. 1 / 2 / 3 / sp* (L _{min} = 0,1 m / L _{max} = 20 m) 2 (PFA) 9 IP65 – IP40 Type 1983AD KIAG 10-32 pos. int. – BNC pos. 2 / 5 / sp* (L _{min} = 0,1 m / L _{max} = 5 m) 2 (Viton®) 9 IP65 threaded connector – IP40
	ConnectorLengthmDiametermmDeg. of protection to IEC/EN 6053Technical dataConnectorLengthmDiametermmDeg. of protection to IEC/EN 6053	KIAG 10-32 pos. int. – BNC pos. 1 / 2 / 3 / sp* (L _{min} = 0,1 m / L _{max} = 20 m) 2 (PFA) 9 IP65 – IP40 Type 1983AD KIAG 10-32 pos. int. – BNC pos. 2 / 5 / sp* (L _{min} = 0,1 m / L _{max} = 5 m) 2 (Viton®) 9 IP65 threaded connector – IP40 IP67 welded connector – IP40
	ConnectorLengthmDiametermmDeg. of protection to IEC/EN 6053Technical dataConnectorLengthmDiametermmDeg. of protection to IEC/EN 6053Technical data	KIAG 10-32 pos. int. – BNC pos. 1 / 2 / 3 / sp* (L _{min} = 0,1 m / L _{max} = 20 m) 2 (PFA) 9 IP65 – IP40 Type 1983AD KIAG 10-32 pos. int. – BNC pos. 2 / 5 / sp* (L _{min} = 0,1 m / L _{max} = 5 m) 2 (Viton®) 9 IP65 threaded connector – IP40 Type 1941A
	ConnectorLengthmDiametermmDeg. of protection to IEC/EN 6053Technical dataConnectorLengthmDiametermmDeg. of protection to IEC/EN 6053Technical dataConnectorLengthDeg. of protection to IEC/EN 6053Technical dataConnector	KIAG 10-32 pos. int. – BNC pos. 1 / 2 / 3 / sp* (L _{min} = 0,1 m / L _{max} = 20 m) 2 (PFA) 9 IP65 – IP40 Type 1983AD KIAG 10-32 pos. int. – BNC pos. 2 / 5 / sp* (L _{min} = 0,1 m / L _{max} = 5 m) 2 (Viton®) 9 IP65 threaded connector – IP40 IP67 welded connector – IP40 KIAG 10-32 pos. int. – TNC pos.

*sp: Special length to customer specifications

Single-Wire Connecting Cables

onnecting Cables for Sensors w	ith KIAG 10-32. neg. Connect	or
	Technical data	Туре 1967А
	Connector	KIAG 10-32 pos. int. – KIAG 10-32 pos. int.
	Length m	1 / sp* (L _{min} = 0,5 m / L _{max} = 10 m)
	Diameter mm	2,6 (ground-isolated stainless steel sheath)
	Deg. of protection to IEC/EN 60529	IP65 – IP65
	Technical data	Туре 1969А
	Connector	KIAG 10-32 pos. int. – KIAG 10-32 pos. int.
	Length m	1 / sp* (L _{min} = 0,5 m / L _{max} = 10 m)
	Diameter mm	2,6 (PFA with stainless steel sheath)
	Deg. of protection to IEC/EN 60529	IP65 – IP65
	Technical data	Type 1983AC
	Connector	KIAG 10-32 pos. int. – KIAG 10-32 pos. int.
	Length m	0,5 / 1 / 1,5 / 2 / 3
	Diameter mm	2 (Viton [®])
	Deg. of protection to IEC/EN 60529	IP65 threaded connector – IP65 IP67 welded connector – IP65
	Technical data	Туре 1943А
	Connector	KIAG 10-32 pos. int. – Mini-Coax neg.
	Length m	1 / 2 / 3 / sp* (L _{min} = 0,1 m / L _{max} = 10 m)
	Diameter mm	2 (PFA)
	Deg. of protection to IEC/EN 60529	IP65 – IP40
	Technical data	Туре 1945А
	Connector	KIAG 10-32 pos. int. – Mini-Coax neg.
	Length m	1 / 2 / sp* (L _{min} = 0,1 m / L _{max} = 5 m)
	Diameter mm	1 (PFA)
	Deg. of protection to IEC/EN 60529	IP65 – IP40

Data sheet 000-352

Connecting Cables for Sensors with KIAG 10-32. neg. Connector, incl. Clamping Angle for Cable Coupling

Technical data	Туре 1979А
Connector	KIAG 10-32 pos. int. – Fischer Triax neg. KE 103A015-12
Length m	1 / sp* (L _{min} = 0,1 m / L _{max} = 20 m)
Diameter mm	3,2 (Viton [®])
Deg. of protection to IEC/EN 60529	IP65 – IP65

-55 ... 200

General	technical	data	

Operating temp. range °C

Data sheet 1631C_000-346

KIAG 10-32 pos.Connector with union nutKIAG 10-32 pos. int.Threaded connector (can be welded to sensor)*sp: Special length to customer specifications

Single-Wire Connecting Cables

Connecting Cables for Sensors with M4x0,35 neg. Connector

Operating temp. range

Deg. of protection to IEC/EN 60529

°C

90	
<u></u>	

Technical data		Туре 1651С
Connector		M4x0,35 pos. – BNC pos.
Length	m	0,5 / 1 / 2 / 5 / 10 / sp* (L _{min} = 0,3 m / L _{max} = 10 m)
Diameter	mm	2 (PFA)
Operating temp. range	°C	-55 200
Deg. of protection to IEC.	/EN 60529	IP65 – IP40
Technical data		Туре 1951А
Connector		M4x0,35 pos. int. – KIAG 10-32 pos.
Length	m	0,4 / sp* (L _{min} = 0,1 m / L _{max} = 5 m)
Diameter	mm	2.6 (Kapton [®] with stainless steel sheath)

Technical data	Туре 1923А
Connector	M4x0,35 pos. int. – KIAG 10-32 pos. int.
Length m	$1 / sp^* (L_{min} = 0, 1 m / L_{max} = 5 m)$
Diameter mm	2 (PFA)
Operating temp. range °C	-55 200
Deg. of protection to IEC/EN 60529	IP65 – IP65

-55 ... 300

IP65 – IP65

Technical data	Туре 1983АВ
Connector	M4x0,35 pos. int. – KIAG 10-32 pos. int.
Length m	0,5 / 1 / 1,5 / 2 / 3 / 5
Diameter mm	2 (Viton®)
Operating temp. range °C	-55 200
Deg. of protection to IEC/EN 60529	IP65 threaded connector – IP65 IP67 welded connector – IP65

Data sheet 1631C_000-346

Connecting Cables for Sensors with TNC neg. Connector

Technical data	Туре 1609В
Connector	TNC pos. – BNC pos.
Length m	2 / 5 / 10 / 20 / 50 / sp* (L _{min} = 0,1 m / L _{max} = 50 m)
Diameter mm	3,2 (PVC)
Operating temp. range °C	-25 70
Deg. of protection to IEC/EN 60529	IP40 – IP40

Technical data		Туре 1610А
Connector		TNC pos. – BNC pos.
Length	m	2 / 5 / 10 / sp* (L _{min} = 0,1 m / L _{max} = 20 m)
Diameter	mm	2 (PFA)
Operating temp. range	°C	-55 200
Deg. of protection to IEC/	EN 60529	IP65 – IP40

Technical data		Туре 1619В
Connector		TNC pos. – BNC pos.
Length	m	5 / 10 / sp* (L _{min} = 0,1 m / L _{max} = 20 m)
Diameter	mm	9,7 (metal sheath)
Operating temp. range	°C	-25 70
Deg. of protection to IEC/I	EN 60529	IP65 – IP40

*sp: Special length to customer specifications

Data sheet 1631C_000-346

Single-Wire Connecting Cables

Connecting Cables for Sensors with BNC neg. Connector

Туре 1601В
BNC pos. – BNC pos.
0,5 / 1 / 2 / 5 / 10 / 20 / sp* (L _{min} = 0,1 m / L _{max} = 50 m)
3,2 (PVC)
-25 70
IP40 – IP40

Technical data	Туре 1615В
Connector	TNC pos. – TNC pos.
Length m	5 / sp* (L _{min} = 1 m / L _{max} = 10 m)
Diameter mm	9,7 (metal sheath)
Operating temp. range °C	-25 70
Deg. of protection to IEC/EN 60529	IP65 – IP65

See page 145 for cable connectors, couplings and accessories

Data sheet 1631C_000-346

Extension Cables

BNC Extension Cable

Technical data	Туре 1603В
Connector	BNC neg. – BNC pos.
Length m	2 / 5 / 10 / 20 / 50 / sp* (L _{min} = 0,1 m / L _{max} = 50 m)
Diameter mm	3,2 (PVC)
Operating temp. range °C	-25 70
Deg. of protection to IEC/EN 60529	IP40 – IP40

Data sheet 1631C_000-346

KIAG 10-32 Extension Cable

Technical data	Туре 1637С
Connector	KIAG 10-32 neg. – KIAG 10-32 pos.
Length m	5 / sp* (L _{min} = 0,3 m / L _{max} = 5 m)
Operating temp. range °C	-55 200
Deg. of protection to IEC/EN 60529	IP65 – IP65

Data sheet 1631C_000-346

Multi-Wire Connecting Cables

Connecting Cable for SlimLine Kits with Fischer Flange 7-pole neg. Connector	

Technical data	Туре 1971А1
Connector	Fischer flange 7-pole pos. – 1 x BNC pos.
Length m	3
Diameter mm	2 (PFA)
Number of conductors	1
Deg. of protection to IEC/EN 60529	IP65 – IP40

*sp: Special length to customer specifications

Multi-Wire Connecting Cables

Connecting Cables for SlimLine Kits with Fischer Flange 7-pole neg. Connector

Connector

Length

Diameter

Technical data

Number of conductors

Deg. of protection to IEC/EN 60529

Technical data	Туре 1971А2
Connector	Fischer flange 7-pole pos. – 1 x Mini Coax neg.
Length m	3
Diameter mm	2 (PFA)
Number of conductors	1
Deg. of protection to IEC/EN 60529	IP65 – IP40

Fischer flange 7-pole pos. – 2 ... 4 x BNC pos.

Туре 1973АХ1...

7,2 (protective sheath)

3

2 ... 4

IP67 – IP40

m

mm

Technical data	Туре 1973АХ2
Connector	Fischer flange 7-pole pos. – 4 x Mini Coax neg.
Length m	3
Diameter mm	7,2 (protective sheath)
Number of conductors	2 4
Deg. of protection to IEC/EN 60529	IP67 – IP40
General technical data	
Operating temp. range °C	-20 120

Data sheet 9131A_000-109

Connecting Cables for 3-Component Sensors with V3 neg. Connector

Technical data	Туре 1698АА
Connector	V3 pos. – 3 x BNC pos.
Length m	$1 / 2 / 5 / sp^*$ (L _{min} = 0,2 m / L _{max} = 20 m)
Diameter mm	3 x 2 (PFA with plastic sheath)
Number of conductors	3
Deg. of protection to IEC/EN 60529	IP65 – IP40

Technical data	Туре 1698АВ
Connector	V3 pos. – Fischer 9-pole pos.
Length m	$1 / 2 / 5 / sp^* (L_{min} = 0.5 \text{ m} / L_{max} = 20 \text{ m})$
Diameter mm	3,6 (PFA)
Number of conductors	3
Deg. of protection to IEC/EN 60529	IP65 – IP65

V3 pos. – Fischer 9-pole pos.
$sp^* (L_{min} = 2 m / L_{max} = 5 m)^{**}$
9,7 (Viton [®] with stainless steel sheath)
3
IP67 – IP65

General technical data	
Operating temp. range °C	-40 120

*sp: Special length to customer specifications

Data sheet 1687B_000-545

Multi-Wire Connecting Cables

Connecting Cables for Multicomponent Dynamometers with Fischer Flange 9-pole neg. Connector

L			Technical data		Туре 1677А5
A BURNING	AND STORE		Connector		Fischer flange 9-pole pos. – Fischer 9-pole pos.
1		Ca	Number of conductors		8
		9	Application		6-component measurement
			Technical data		Туре 1679А5
T THINKNOW	10		Connector		Fischer flange angle 9-pole pos. – Fischer 9-pole pos.
		Ca	Number of conductors		8
and the second s		0	Application		6-component measurement
T			Technical data		Туре 1687В5
BURNING STREET			Connector		Fischer flange 9-pole pos. – Fischer 9-pole pos.
		C.	Number of conductors		3
		-	Application		3-component measurement
			Technical data		Туре 1689В5
I. Museumanine	10	E	Connector		Fischer flange angle 9-pole pos. – Fischer 9-pole pos.
		Ca	Number of conductors		3
and the second second		0	Application		3-component measurement
			General technical data		
			Deg. of protection to IEC/EN	60529	IP67 – IP65
			Length n	n	5

Data sheet 1687B_000-545

Connecting Cables for Multicomponent Dynamometers with Fischer Flange 7-pole neg. Connector					
	AI 🧮		Technical data	Type 1696A Fischer flange 7-pole pos. – Fischer 9-pole pos.	
			Number of conductors	6	
			Application	5-component measurement	
10			Technical data	Туре 1697А	
	AN CONTRACTOR	Se la	Connector	Fischer flange 7-pole pos. – Fischer 9-pole pos.	
			Number of conductors	3	
			Application	3-component measurement	

mm

General technical data

Diameter

Deg. of protection to IEC/EN 60529	IP67 – IP65
Length m	5 / sp* (L _{min} = 1 m / L _{max} = 5 m)
Diameter mm	7 (Viton [®] with stainless steel sheath)

12,3 (flexible stainless steel sheath)

Data sheet 1687B_000-545

*sp: Special length to customer specifications ** The sheath is torsion proof. To allow a secure Fischer connection,

a 0,5 m longer cable must always be ordered.

Connecting

Multi-Wire Connecting Cables

Connecting Cables for Transmitters with M12x1 8-pole pos. Connector

Technical data	Туре 1787А
Connector	M12x1 8-pole neg. – flying leads
Length m	5 / 20
Diameter mm	6,6
Number of conductors	8
Deg. of protection to IEC/EN 60529	IP67 at the transmitter end

Accessories

Couplings					
	Technical data	Туре 1701	ST Mar	Technical data	Туре 1705
	Connector	BNC neg. – BNC neg.		Connector	BNC pos. – M4x0,35 neg.
	Technical data	Туре 1711	3	Technical data	Туре 1721
	Connector	TNC neg. – TNC neg.		Connector	BNC pos. – KIAG 10-32 neg.
trilling .	Technical data	Туре 1723	other designments	Technical data	Туре 1729А
in the	Connector	TNC pos. – KIAG 10-32 neg.	CONTRACTOR CONTRACTOR	Connector	KIAG 10-32 neg. –
A			al annual as		KIAG 10-32 neg.
B					
	Technical data	Туре 1733	1.00	Technical data	Туре 1743
	Connector	BNC pos. –	ETQ	Connector	BNC pos. – 2 x BNC neg.
		Bananenstecker neg.	1000		
			111	Technical data	Туре 1700А29
	Technical data	Туре 1749	#= E	Connector	KIAG 10-32 pos. (int.) – KIAG 10-32 neg.
	Connector	KIAG 10-32 pos. – 2 x KIAG 10-32 neg.			
-T-				Data	sheet 1700_000-347

Feed-Through Couplings							
	Technical data Connector	Type 1713 TNC neg. – TNC neg.		Technical data Connector Data si	Type 1703 BNC neg. – BNC neg. heet 1700_000-347		
Plastic Protectio	n Caps						
	Technical data	Туре 1851	100	Technical data	Туре 1861А		
		Type 1851 BNC neg.		Technical data Area of application	Type 1861A BNC pos.		
D	Technical data	21			21		

Data sheet 1700_000-347

Connecting

Accessories

Cover for Sockets	, with Chain				
CHee, pass	Technical data Area of application	Type 1853 BNC neg.	Contract page	Technical data Area of application Data sl	Type 1873 TNC neg. neet 1700_000-347
Short-circuit Cove	er for Sockets, wi	th Chain			
and the second	Technical data Area of application	Type 1855 BNC neg.		Technical data Area of application	Type 1865 BNC pos.
	Technical data Area of application	Type 1875 TNC neg.	O II-C-6 VER	Data si	neet 1700_000-347
Carton of the			See data sheet 1700 000-34	17 for other cable conn	ectors, couplings and accessori

Connecting Cables for Rotating Torque Sensors

Connecting Cables for Sensors Types 4501A... to 4504A...

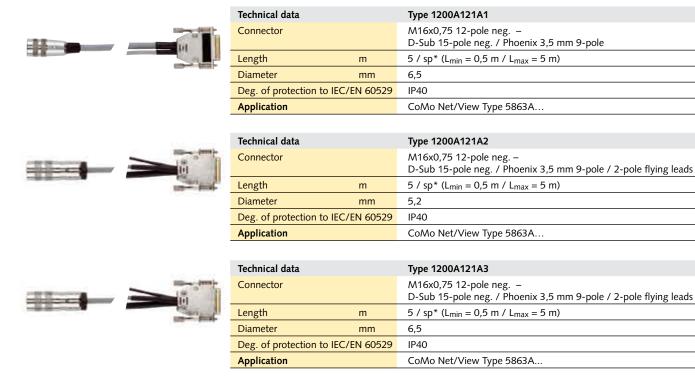
Т
C
L
D
-

Technical data	Туре КЅМ071860-5
Connector	6-pole neg. – 6-pole pos.
Length m	5
Diameter mm	6
Deg. of protection to IEC/EN 60529	IP40

Technical data	Туре КЅМ103820-5
Connector	6-pole neg. – flying leads
Length m	5
Diameter mm	6
Deg. of protection to IEC/EN 60529	IP40

Technical data		Type KSM183150-5 (only for 4501A, QA and HA)
Connector		12-pole neg. – flying leads
Length	m	5
Diameter	mm	б
Deg. of protection to	IEC/EN 60529	IP40

Technical data	Туре КЅМ124970-5
Connector	12-pole neg. – flying leads
Length m	5
Diameter mm	6
Deg. of protection to IEC/EN 60529	IP40



Technical data	Туре КЅМ219710-5
Connector	7-pole neg. – flying leads
Length m	5
Diameter mm	6
Deg. of protection to IEC/EN 60529	IP40

Connecting

Connecting Cables for Torque Sensors

Cables for Connecting Sensors Types 4501A... to 4504A... to CoMo Net®

Connector for Torque Sensors and Force Sensors Types 4576A... and 4577A...

Female Cable Connectors for Sensors Types 4501A... to 4504A...

Technical data	Туре КЅМ000822, КЅМ000517, КЅМ000703
Connector	6-, 7- or 12-pole neg.
Deg. of protection to IEC/EN 60529	IP40

See data sheet KSM_000-615 for other female cable connectors

Professional installation and calibration of systems consisting of force sensors and matching electronics is the only way of achieving reliable results. Kistler's wide range of mechanical and electrical accessories, calibration and test equipment makes this tried and tested approach possible.

Piezoelectric force sensors are characterized by their extreme rigidity and high natural frequency, but also require great care during mounting. The mechanical loads in the sensor element must not exceed the permissible limit at any point and peaks are to be avoided. The sensor preload also has to meet a range of requirements. Shear forces, for example, are transmitted by means of static friction and closure of microscopic gaps between the sensor and the components introducing the load ensures the high rigidity is maintained. The preload must also accommodate all loads on the sensor. The measuring ranges of Kistler sensors are specified to minimize the risk of fractures.

Calibrated load washers are supplied with a tested mounting set. Higher preloading forces are best accommodated by highstrength **preloading elements**. Multicomponent force sensors should always be mounted with the designated preloading elements. Suitable **mounting accessories** allow mounting of force sensors even under adverse conditions.

Mounting sensors in dynamometers requires base and cover plates of sufficient rigidity to prevent unacceptable deflection of the cover plate and eccentric loading of the sensor under point loads. **Accessories** such as distributing caps and rings are used to ensure centric force application.

Preload measuring instruments are

employed for on-site charge measurements to determine parameters such as the preload of piezoelectric strain sensors required for mounting. Such instruments are small, light, accommodate integral charge amplifiers and do not require external power. Summing and distribution boxes can collect and distribute the charge signals.

Strain gage sensors for measuring torque on rotating shafts are basically mounted with **couplings**. These decouple interference from the measuring shaft, ensure accurate measurement and increase the service life of the sensor. Kistler's range caters for a wide variety of geometric and power requirements.

Preloading Elements

Preloading Disk for SlimLine Sensors

Technical data		Туре 9410А0	Туре 9410А2	Туре 9410А3	Туре 9410А4
for sensor	Туре	9130B	9132B	9133B	9134B
Thread		M2	M2,5	M3	M4
D, outside ø	mm	8	12	16	20
d, inside ø	mm	2,7	2,7	3,2	4,3
H, disk thickness	mm	3,55	3,55	4,25	4,25
L, screw length	mm	8	8	10	10

Technical data		Type 9410A5	Туре 9410А6	Туре 9410А7
for sensor	Туре	9135B	9136B	9137B
Thread		M5	M6	M8
D, outside ø	mm	24	30	36
d, inside ø	mm	5,3	6,4	8,4
H, disk thickness	mm	4,25	5,5	7
L, screw length	mm	10	14	16

Supplied with 1 countersunk screw

Data sheet 9130B_000-110

Set of Preloading Elements for Load Washers

Technical data		Туре 9420А01	Туре 9420А11	Туре 9420А21	Туре 9420А31
for sensor	Туре	9001A	9011A	9021A	9031A
Inside ø of sensor	mm	4,1	6,5	10,5	13
Preloading screw Thread L, Length	mm	M4x0,5 22	M5x0,5 28	M8x1 40	M10x1 46
Preloading force	kN	4	7	18	30

Technical data		Туре 9420А41	Туре 9420А51	Туре 9420А61	Туре 9420А71
for sensor	Туре	9041A	9051A	9061A	9071A
Inside ø of sensor	mm	17	21	26,5	40,5
Preloading bolt Thread L, Length	mm	M12x1 60	M14x1,5 62	M20x1,5 80	M27x2 102
Preloading force	kN	45	60	100	200

Characteristics

Standardized preloading element for mounting load washers Types 9001A ... 9071A. A set of preloading elements consists of a preloading bolt, a hexagonal nut, a centering sleeve and two insulating washers. High-strength, corrosion resistant materials are used.

Applications

Preloading of load washers and torque sensors for optimized force application and ground-isolated mounting.

Preloading Elements

Preloading Screw for Load Washers

Technical data		Туре 9422А01	Туре 9422А11	Туре 9422А21	Туре 9422А31
for sensor	Туре	9001A	9011A	9021A	9031A
Inside ø of sensor	mm	4,1	6,5	10,5	13
Preloading screw Thread L, Length	mm	M3x0,5 16	M5x0,8 20	M8x1,25 30	M10x1,5 35
Preloading force	kN	2,5	5	10	20

Technical data		Туре 9422А41	Туре 9422А51
for sensor	Туре	9041A	9051A
Inside ø of sensor	mm	17	21
Preloading screw Thread L, Length	mm	M12x1,75 40	M14x2 45
Preloading force	kN	30	40

Characteristics

Standardized preloading screw for mounting load washers Types 9001A ... 9051A. Centering clip is used to align the sensor with screw. The preloading screw is supplied with each sensor Type 9001A ... 9015A.

Applications Preloading of load washer for

general force measurement.

Data sheet 9001A_000-105 9001A_000-182

Set of Preloading Elements, M20x1,5

Technical data		Туре 9451А		
for sensor	Туре	9067, 9068		
Inside ø of sensor	mm	26,5		
Thread		M20x1,5		
Preloading force	kN	160		
Characteristics		Applications	Accessories	

Standardized high-strength preloading elements.

For mounting 3-component force sensors, optimized force application and temperature compensation

Wrench adapter Type 9471

Data sheet 9451A_000-194

Set of Preloading Elements, M40x2

Technical data		Туре 9455
for sensor	Туре	9077C, 9078C
Inside ø of sensor	mm	40,5
Thread		M40x2
Preloading force	kN	300

Characteristics

Standardized high-strength preloading elements. Hollow preloading screw allows mounting on base plate through the sensor.

Applications

For mounting 3-component force sensors, optimized force application and temperature compensation.

Accessories

Wrench adapter Type 9473

Data sheet 9455_000-195

Preloading Elements

Set of Preloading Elements, M26x0,75

0,75		
Technical data		Туре 9459
for sensor	Туре	9067, 9068
Inside ø of sensor	mm	26,5
Thread		M26x0,75
Preloading force	kN	160

Characteristics

Standardized high-strength preloading elements. Hollow preloading screw allows installation on base plate through the sensor.

Applications

For mounting 3-component force sensors, optimized force application and temperature compensation.

Accessories

Wrench adapter Type 9477

Data sheet 9459_000-196

Set of Preloading Elements, M8x1

Technical data		Туре 9461	
for sensor	Туре	9251A, 9252A, 9601A	
Inside ø of sensor	mm	8,1	
Thread		M8x1	
Preloading force	kN	25	
Characteristics		Applications	Accessories

Standardized high-strength preloading elements.

For mounting 3-component force sensors, optimized load application and temperature compensation.

Wrench adapter Type 9475

Data sheet 9461_000-197

Set of Preloading Elements, M14x1

x1	,5			
	Technical data		Туре 9465	
	for sensor	Туре	9047C, 9048C	
	Inside ø of sensor	mm	14,1	
	Thread		M14x1,5	
	Preloading force	kN	60	
S	haracteristics tandardized high-strength reloading elements.		Applications For mounting 3-component force sensors, optimized force applica- tion and temperature compensa-	Accessories Wrench adapter Type 9472 Data sheet 9465_000-198

tion.

Preloading Key for Multicomponent Force Sensor

Technical data		Туре 9463
for sensor	Туре	9601A, 9602A
Inside ø of sensor	mm	8,1
LxWxH	mm	28x24x6
Preloading force	kN	25

Characteristics Slim design, easily installed and removed.

Applications For mounting 3-component force sensors in machine structures.

Data sheet 9601A_000-172 9601A_000-451

Accessories for Force Introduction

Force Distributing Cap for Force Links

Technical data		Туре 9500А0	Туре 9500А1	Туре 9500А2	Туре 9500АЗ
for sensor	Туре	9301B	9311B	9321B	9331B
D	mm	8,5	12,5	18	23
d		M5	M6	M10	M12
Н	mm	4	6	9	12

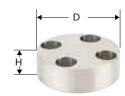
Technical data		Туре 9500А4	Type 9500A5	Туре 9500А6	Туре 9500А7
for sensor	Туре	9341B	9351B	9361B	9371B
D	mm	31	35	45	64
d		M16	M20	M24	M30
Н	mm	15	18	22	32

Data sheet 9301B_000-107

Force Distributing Cap for Load Washers

Technical data		Type 9509	Type 9519	Type 9529	Type 9539
for sensor	Туре	9001A	9011A	9021A	9031A
D	mm	10	14	22	28
d	mm	4,1	6,5	10,5	13
Н	mm	10	15	20	25

Technical data		Туре 9549	Туре 9559	Туре 9569	Туре 9579
for sensor	Туре	9041A	9051A	9061A	9071A
D	mm	34	40	52	75
d	mm	17	21	26,5	40,5
Н	mm	30	40	50	60

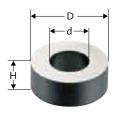

Standardized accessory for special mounting requirements for load washers Types 9001A \ldots 9071A

Data sheet 9505_000-193

Force Distributing Cap for Press Force Sensors

Type 9500A00... d ↓

F	orce sensors			
	Technical data		Туре 9500А00	Туре 9500А01
	for sensor	Туре	9313AA1	9313AA2
	D	mm	6	10,5
	d		M2,5	M4
	Н	mm	3	5

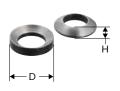

Technical data		Type 9582A0	Type 9582A1	Туре 9582А2
for sensor	Туре	9333A	9343A	9363A
D	mm	30	36,5	56
Н	mm	11	13	22

Data sheet 9333_000-454

Туре 9582А...

Accessories for Force Application

Force Distributing Ring for Load Washers


Technical data		Туре 9505	Туре 9515	Туре 9525	Туре 9535
for sensor	Туре	9001A	9011A	9021A	9031A
D	mm	10	14	22	28
d	mm	4,1	6,5	10,5	13
Н	mm	6	8	10	11

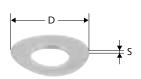
Technical data		Туре 9545	Туре 9555	Туре 9565	Туре 9575
for sensor	Туре	9041A	9051A	9061A	9071A
D	mm	34	40	52	75
d	mm	17	21	26,5	40,5
Н	mm	12	13	15	17

Standardized accessory for special mounting requirements for load washers Types 9001A \ldots 9071A

Data sheet 9505_000-193

Spherical Washer for Load Washers

Technical data		Туре 9513	Туре 9523	Туре 9533	Туре 9543
for sensor	Туре	9011A	9021A	9031A	9041A
D	mm	12	21	24	30
H (overall)	mm	4	6	7	8
Technical data		Type 9553	Type 9563	Type 9573	


Technical data		Туре 9553	Туре 9563	Туре 9573
for sensor	Туре	9051A	9061A	9071A
D	mm	36	52	75
H (overall)	mm	10	14	20

Standardized accessory for special mounting requirements for load washers Types 9001A \ldots 9071A

Data sheet 9505_000-193

Mounting Accessories

Insulating Washer for Load Washers

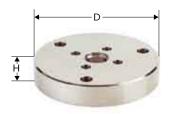
Technical data		Туре 9517	Туре 9527	Туре 9537	Туре 9547
for sensor	Туре	9011A	9021A	9031A	9041A
D	mm	14	22	28	34
Н	mm	1	1	1	2
S	mm	0,13	0,13	0,13	0,13

Technical data		Туре 9557	Туре 9567	Туре 9577
for sensor	Туре	9051A	9061A	9071A
D	mm	40	52	75
н	mm	2	2	2
S	mm	0,13	0,13	0,13

Standardized accessory for special mounting requirements for load washers Types 9001A \ldots 9071A

Data sheet 9505_000-193

Flange for Force Links

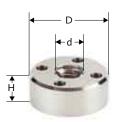


Technical data		Туре 9501А0	Туре 9501А1	Туре 9501А2	Туре 9501АЗ
for sensor	Туре	9301B	9311B	9321B	9331B
D	mm	25	34	44	56
Н	mm	8	9	16	20
Technical data			Tupe 950145		Tupe 950147

lechnical data		Type 9501A4	Type 9501A5	Type 9501A6	Type 9501A7
for sensor	Туре	9341B	9351B	9361B	9371B
D	mm	70	84	102	136
Н	mm	27	35	42	51

Data sheet 9301B_000-107

Flange for Press Force Sensors and Reaction Torque Sensors


Technical data		Туре 9580А7	Туре 9580А8	Туре 9580А9	Туре 9580А0
for press force sensor	Туре	9313AA1	9313AA2	9323A/9323AA	9333A
for reaction torque sensor	Туре	-	-	9329A	9339A
D	mm	27	35	40	62
Н	mm	7	8	8	11

Technical data		Type 9580A1	Type 9580A2	Туре 9580А4	Туре 9594А1
for press force sensor	Туре	9343	9363	-	9337A40X
for reaction torque sensor	Туре	9349A	9369A	9389A	-
D	mm	70	100	180	80
Н	mm	13	22	30	13

Data sheets 9333_000-454 9329A_000-463 9337A_000-664

Mounting Accessories

Female Thread Adapter for Press Force Sensors

Technical data		Туре 9584А9	Туре 9584А0	Туре 9584А1	Type 9584A2
for sensor	Туре	9323A/9323AA	9333A	9343A/9337A	9363A
D	mm	20	30	36,5	56,0
d	mm	M4	M8	M12	M18
Н	mm	8	11	14	21

Data sheet 9333_000-454

Male Thread Adapter for Press Force Sensors

Technical data		Туре 9586А9	Туре 9586А0	Туре 9586А1	Туре 9586А2
for sensor	Туре	9323A/9323AA	9333A	9343A/9337A	9363A
D	mm	20	30	36,5	56
d	mm	M4	M8	M12	M18
Н	mm	8	11	14	21

Data sheet 9333_000-454

Couplings for Torque Sensors

Torsion Proof Multi-Disk Coupling for Torque Measurement Flange Type 4504A...

Type 2300A... variant S

Type 2300A... variant F

Type 2300A... variant H

Type 2300A... variant A

General technical data	Туре 2300А10	Туре 2300А25	Туре 2300А40
Coupling for sensor Type	4504A50/100	4504A200	4504A500
Rated torque T _{KN} N·m	100	420	650
Peak transient torque T _{Kmax} N·m	150	630	975
Coupling outside diameter Dak mm	69	89	104
Torsion resistance (per assembly) CT 10 ³ ·N·m/rad	60	290	320
Overall torsion resistance CT overall 103·N·m/rad	30	145	160

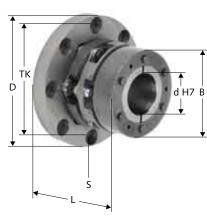
General technical data	Туре 2300А100	Туре 2300А300	Туре 2300А500
Coupling for sensor Type	4504A1K	4504A2K	4504A3K
Rated torque T_{KN} N·m	1 600	3 500	5 800
Peak transient torque T _{Kmax} N·m	2 400	5 250	8 700
Coupling outside diameter D _{aK} mm	143	167	198
Torsion resistance (per assembly) CT 103·N·m/rad	1 900	3 480	11 900
Overall torsion resistance C _{T overall} 10 ³ ·N·m/rad	950	1 740	5 950

General technical data	Туре 2300А850
Coupling for sensor Type	4504A5K
Rated torque T _{KN} N·m	9 500
Peak transient torque T _{Kmax} N·m	14 250
Coupling outside diameter DaK mm	234
Torsion resistance (per assembly) CT 10 ³ ·N·m/rad	20 600
Overall torsion resistance CT overall 10 ³ ·N·m/rad	10 300

Characteristics

Torsion proof multi-disk coupling for effective, space-saving connection of torque sensor Type 4504A... into the shafting.

Applications


The multi-disk coupling is used to compensate for axial, radial and angular misalignment with a torque sensor. This is always essential to avoid measurement errors and damage to the sensor. The different variants allow easy integrating of the sensor into virtually any application.

Included accessories

Screws for assembly with sensor Type 4504A...

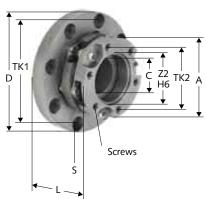
Couplings for Torque Sensors

Torsion Proof Multi-Disk Coupling for Torque Measuring Flange Type 4504A... with Tension Ring Hub (Variant S)

Type 2300A... variant S Coupling with tension ring hub

Technical data			Туре 2300А105	Туре 2300А255	Туре 2300А405
Max. speed	n _{max}	rpm	15 000	15 000	12 000
Moment of inertia	J	10 ⁻³ ·kg·m ²	0,81	4,3	13,4
Mass		kg	0,85	2,7	5,6
В		mm	68	82	100
d H7 (min max)		mm	19 38	32 52	40 60
D		mm	100	120	155
ТК		mm	87	105	133
L		mm	62,5	84	97,2
S		8 x 45°	M6	M8	M12

Technical data			Type 2300A100S	Туре 2300А300S	Type 2300A500S
Max. speed	n _{max}	rpm	12 000	10 000	10 000
Moment of inertia	J	10 ⁻³ ∙kg∙m²	56	100	210
Mass		kg	14,1	21	35
В		mm	143	167	198
d H7 (min max)		mm	55 90	50 85	60 100
D		mm	185	210	232
ТК		mm	133	165	165
L		mm	137,2	158,4	192
S		8 x 45°	M12	M14	M14


Technical data			Туре 2300А850S
Max. speed	n _{max}	rpm	8 000
Moment of inertia	J	10 ⁻³ ·kg·m ²	540
Mass		kg	60
В		mm	234
d H7 (min max)		mm	70 120
D		mm	284
ТК		mm	206
L		mm	231
S		8 x 45°	M18

Applications

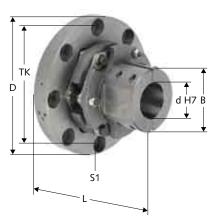
Adapts sensor Type 4504A... to a device with straight shaft end; suitable for high-speed applications with small axial misalignment. Accessories None

Couplings for Torque Sensors

Coupling for Torque Measuring Flange Type 4504A... with Flange (Variant F)

Technical data			Туре 2300А25F	Туре 2300А40F	Туре 2300А100F
Max. speed	n _{max}	1/min	15 000	12 000	12 000
Moment of inertia	J	10 ⁻³ ·kg·m ²	3,4	11	43,5
Mass		kg	1,9	3,8	9,3
А		mm	89	104	143
С		mm	41	46	66
D		mm	120	155	185
TK1		mm	105	133	133
TK2		mm	75	86	116
Z2 H7		mm	55	65	92
Screws			6 x M8	6 x M10	6 x M12
L		mm	54	65,2	97,2
S		8 x 45°	M8	M12	M12

Type 2300A... variant F Coupling with flange


Technical data			Type 2300A300F	Type 2300A500F	Туре 2300А850F
Max. speed	n _{max}	1/min	10 000	10 000	8 000
Moment of inertia	J	10 ⁻³ ∙kg∙m²	80,7	160	407,5
Mass		kg	13,9	22	39
А		mm	178	210	250
С		mm	61	66	76
D		mm	210	232	284
TK1		mm	165	165	206
TK2		mm	150	175	210
Z2 H7		mm	100	120	140
Screws			6 x M16	8 x M16	8 x M20
L		mm	110,4	133	160
S		8 x 45°	M14	M14	M18

Applications Adapts sensor Type 4504A... to a device with straight shaft end; suitable for high-speed applications with small axial misalignment.

Accessories None

Couplings for Torque Sensors

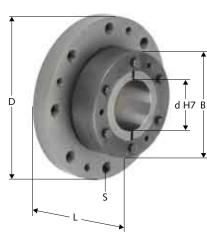
Coupling for Torque Measuring Flange Type 4504A... with Half-Shell Hub (Variant H)

Type 2300A... variant F Coupling with flange

	Technical data			Туре 2300А25Н	Туре 2300А40Н	Туре 2300А100Н
	Max. speed	n _{max}	1/min	8 200	7 000	5 100
	Moment of inertia	J	10 ⁻³ ·kg·m ²	3,5	11,6	46,5
	Mass		kg	2,6	4,5	12
-	В		mm	60	70	100
	d H7		mm	22 32	25 40	35 60
	D		mm	120	155	185
	ТК		mm	105	133	133
-	L		mm	84	102,2	152,2
	S1		8 x 45°	M8	M12	M12

Technical data Туре 2300А300Н...Туре 2300А500Н...Туре 2300А850Н... Max. speed 1/min 4 300 3 600 3 100 n_{max} 10⁻³·kg·m² Moment of inertia J 84 160 380 Mass kg 18 28 45 В 141 164 mm 121 d H7 70. 50 ... 80 60 .. 95 110 mm D 210 232 284 mm ΤК mm 165 165 206 mm 173,4 197 241 L S1 8 x 45° M14 M14 M18

Applications


Adapts sensor Type 4504A...; for connection with or without keyway to shaft of assembly being tested; for lower-speed applications with larger axial misalignment.

Data sheet 2300A_000-667

Accessories

None

Adapter Flange for Torque Measuring Flange Type 4504A... with Tension Ring Hub (Variant A)

Type 2300A... variant A Adapter flange with tension ring hub

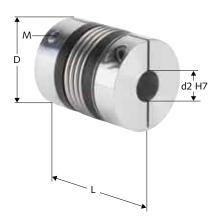
Technical data		Туре 2300А10А	Туре 2300А25А	Туре 2300А40А
d H7	mm	19 38	32 52	40 60
D	mm	100	120	155
L	mm	34	45	53
В	mm	68	82	100
S	8 x 45°	M6	M8	M12
		d H7 mm D mm L mm B mm	d H7 mm 19 38 D mm 100 L mm 34 B mm 68	d H7 mm 19 38 32 52 D mm 100 120 L mm 34 45 B mm 68 82

Technical data		Туре 2300А100А.	Туре 2300А300А.	Туре 2300А500А
d H7	mm	55 90	50 85	60 100
D	mm	155	190	190
L	mm	61	72	79
В	mm	143	164	198
S	8 x 45°	M12	M14	M14

Technical data		Туре 2300А850А
d H7	mm	70 120
D	mm	238
L	mm	98
В	mm	234
S	8 x 45°	M18

Characteristics

Adapter flange for space-saving connection of torque sensor Type 4504A... into the shafting. Provides adaption only – no coupling compensation for misalignment.


Applications

For rigid drive-side adaptation of sensor Type 4504A... to a drive or loading machine.

Accessories None

Couplings for Torque Sensors

Metal Bellows Coupling with Clamping Hubs

Technical data			Туре 2301А15	Туре 2301А30	Туре 2301А60
Rated torque	T _{KN}	N∙m	15	30	60
Torsion resistance	C _{Tdyn}	10³∙N∙m/rad	20	39	76
Moment of inertia	J	10 ⁻³ ·kg·m ²	0,06	0,12	0,32
L		mm	59	69	83
d2 H7 (min max)		mm	8 28	10 30	12 35
D		mm	49	55	66
Μ			M5	M6	M8
Mass		kg	0,15	0,3	0,4

Technical data			Type 2301A80	Туре 2301А150	Туре 2301А200
Rated torque	T _{KN}	N∙m	80	150	200
Torsion resistance	C _{Tdyn}	10³·N·m/rad	129	175	191
Moment of inertia	J	10 ⁻³ ·kg·m ²	0,8	1,9	3,2
L		mm	94	95	105
d2 H7 (min max)		mm	14 42	19 42	22 45
D		mm	81	81	90
Μ			M10	M10	M12
Mass		kg	0,8	1,7	2,5

Technical data			Туре 2301А300	Туре 2301А500	Туре 2301А800
Rated torque	T _{KN}	N∙m	300	500	800
Torsion resistance	C _{Tdyn}	10³∙N∙m/rad	450	510	780
Moment of inertia	J	10 ⁻³ ·kg·m ²	7,6	14,3	16,2
L		mm	111	133	140
d2 H7 (min max)		mm	24 60	35 60	40 75
D		mm	110	124	134
Μ			M12	M16	2xM16
Mass		kg	4	6,3	5,7

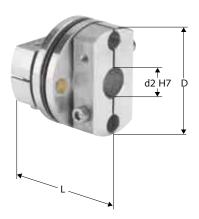
Technical data			Туре 2301А1500
Rated torque	T _{KN}	N∙m	1 500
Torsion resistance	C _{Tdyn}	10³∙N∙m/rad	1 304
Moment of inertia	J	10 ⁻³ ·kg·m ²	43
L		mm	166
d2 H7 (min max)		mm	50 80
D		mm	157
Μ			2 x M20
Mass		kg	12

General technical data

General technical data			
Peak transient torque	T _{Kmax}	N∙m	brief overload of up to 1,5 times value permissible
Max. speed	n _{max}	1/min	<10 000 / >10 000 on request
Operating temp. range		°C	-30 120

Characteristics

Torsion proof stainless steel bellows for coupling both sides of a torque sensor with fixed housing or mounting support into shafting. Low moment of inertia; requires little space; wear and maintenance free.


Applications

The coupling compensates for misalignment where fixed mounting of the torque sensor in shafting is required. This is always essential to avoid measurement errors and damage to the sensor. A doubleflexible coupling must be used with clamping hubs on both sides of sensors mounted with rigid housing or mounting support. The clamped connection relying on friction allows completely backlash-free installation.

Accessories None

Couplings for Torque Sensors

Torsion Proof Miniature Coupling, Single-Flexible with Clamping Hubs

Technical data			Туре 2302А25	Туре 2302А37	Туре 2302А50
Rated torque	T _{KN}	N∙m	0,39	1,56	6,17
Peak transient torque	T _{Kmax}	N∙m	0,54	2,19	8,64
Torsion resistance	C _{Tdyn}	10 ³ ·N·m/rad	3,89	25,986	39,768
Moment of inertia	J	10 ⁻⁶ ·kg·m ²	1,83	11,1	28,56
Max. speed	n _{max}	1/min	64 000	44 000	36 000
L		mm	20,2	29,1	30,4
d2 H7 (min max)		mm	3 10	4 14	6 18
D		mm	25,4	35,8	44,5
Mass		g	22	62	100

Technical data			Туре 2302А62	Type 2302A75
Rated torque	T _{KN}	N∙m	24,7	36,2
Peak transient torque	T _{Kmax}	N∙m	34,6	50,7
Torsion resistance	C _{Tdyn}	10³∙N∙m/rad	103,572	161,76
Moment of inertia	J	10 ⁻⁶ ·kg·m ²	78,61	159,4
Max. speed	n _{max}	1/min	28 000	24 000
L		mm	36,6	41
d2 H7 (min max)		mm	10 24	12 28
D		mm	57,4	64
Mass		g	195	278

Characteristics

Torsion proof miniature coupling for self-supporting mounting of torque sensors without fixed housing in shafting; high speed range; light, low moment of inertia, high torsion resistance, wear and maintenance free; corrosion free, antimagnetic.

Applications

This coupling compensates for misalignment where self-supporting mounting of torque sensors in shafting is required. This is always essential to avoid measurement errors and damage to the sensor.

Accessories None

Couplings for Torque Sensors

Torsion Proof Miniature Coupling, Double-flexible with Clamping Hub

Technical data			Туре 2303А25	Туре 2303А37	Туре 2303А50
Rated torque	T _{KN}	N∙m	0,39	1,56	6,17
Peak transient torque	T _{Kmax}	N∙m	0,54	2,19	8,64
Torsion resistance	C _{Tdyn}	10³∙N∙m/rad	1,945	12,993	19,884
Moment of inertia	J	10 ⁻⁶ ·kg·m ²	2,33	14,01	37,99
Max. speed	n _{max}	1/min	64 000	44 000	36 000
L		mm	34	48	54
d2 H7 (min max)		mm	3 10	4 14	6 18
D		mm	25,4	35,8	44,5
Mass		g	28	77	133

Technical data			Туре 2303А62	Туре 2303А75
Rated torque	T _{KN}	N∙m	24,7	36,2
Peak transient torque	T _{Kmax}	N∙m	34,6	50,7
Torsion resistance	C _{Tdyn}	10³∙N∙m/rad	51,786	80,88
Moment of inertia	J	10 ⁻⁶ ·kg·m ²	104,28	203,55
Max. speed	n _{max}	1/min	28 000	24 000
L		mm	66	71
d2 H7 (min max)		mm	10 24	12 28
D		mm	57,4	64
Mass		g	260	355

Characteristics

Torsion proof miniature coupling for connecting both sides of torque sensors with fixed housing or mounting support into shafting; high speed range; light, low moment of inertia, high torsion resistance, wear and maintenance free; corrosion free, antimagnetic.

Applications

This coupling compensates for misalignment where fixed mounting of torque sensor in the shafting is required. This is always essential to avoid measurement errors and damage to the sensor. A doubleflexible coupling with clamping hubs has to be provided on both sides of sensors with fixed housing or mounting support.

Accessories None

Electronic Accessories

Distributing Box, Fischer 9-pole neg. – 8 x BNC neg.

Technical data	Туре 5405А
Input signal	Fischer 9-pole neg.
Output signal	8 x BNC neg.
Dimensions LxWxH mm	73x99x33

Data sheet 9255A_000-188

Distributing Box, Fischer 9-pole neg. – 3 x BNC neg.

Type 5407A
Fischer 9-pole neg.
3 x BNC neg.
73x99x33

Data sheet 9255_000-188

Summing Box, 4 x Fischer 9-pole neg. – Fischer 9-pole neg.

Technical data	Туре 5417
Input box	4 x PG7
Input signal	4 x Fischer 9-pole neg.
Output signal	Fischer 9-pole neg.
Dimensions LxWxH mm	35x148x62
Application	Cable 2 x 1693A

Data sheet 9047C_000-592 9067C_000-609 9077C_000-610

Summing Box, 12 x Mini Coax pos. – Fischer flange 9-pole neg.

	,
Technical data	Туре 5433
Input box	4 x M13x1
Input signal	12 x Mini-Coax pos.
Output signal	Fischer 9-pole neg.
Dimensions LxWxH mm	93x93x33
Application	Cable 4 x 1695A

Data sheet 9017B_000-465 9047C_000-592 9067C_000-609 9077C_000-610

Electronic Accessories

Input Low-Pass Filter

Technical data		Туре 5321А
Resistance	kΩ MΩ	10 / 33 / 100 / 330 1 / 7,5 / 15 / 30 / 70
Insulation resistance	Ω	>10 ¹⁴
Input signal		BNC neg.
Output signal		BNC pos.
Dimensions LxD	mm	81x16

Characteristics

Consists of a series resistor installed in a highly-insulated metal surround. In combination with sensor and cable capacitance provides a simple RC filter.

Applications

Filters unwanted frequency components from the useful signal and protects charge amplifier from being overdriven by high-frequency interference signals and momentary peaks.

Accessories

None

Data sheet 5321A_000-325

Charge Attenuator

Technical data	Туре 5361А
Attenuation n	2:1*
	5 : 1*
	10 : 1
	20 : 1*
	100 : 1*
	200 : 1*
	1 000 : 1*
Insulation resistance Ω	>10 ¹⁴
Input signal Type/connector	charge (piezoelectric) / BNC neg.
Output signal Type/connector	charge (piezoelectric) / BNC pos.
Dimensions LxWxH mm	57x35x33

Characteristics

Consists of two high-insulation capacitors, one is connected in parallel with the input, the other between the input and output terminals.

Applications

Multiplies the largest measuring range of a charge amplifier by a factor of n.

Accessories

None

Data sheet 5361A_000-326

*= Special modifications

Calibration Capacitor

	THAT IS NOT
Calingation Capaciton	the second second
5VINE A321400000 000000	a set of the set of th
amit without	The second second
	CALIERATION CAPACITOR SYMEASTANDOO 100000

Technical data	Туре 5371А
Capacitance pF	9,5 10,5 100 1 000 10 000 100 000
for max. voltage V	30
Input signal Type/connector	voltage / BNC neg.
Output signal Type/connector	charge (piezoelectric) / BNC pos.
Dimensions LxD mm	81x16

Characteristics

Consists of a high-insulation precision capacitor in a shielded metal surround.

Applications

High-insulation precision capacitor for converting voltage into electric charge. This simulates a mechanical measurand and is used to check and calibrate a piezoelectric measuring system.

Accessories

None

Data sheet 5371A_000-336

Calibration and Test Equipment

Handheld charge amplifier

Technical data	Туре 5995А
Number of channels	1
Measuring range adjustment	increments 1, 2, 5
Measuring range FS pC	±200 200 000
Frequency range (–3 dB) kHz	≈0 10
Display digits	3½ (2 000)
Output signal V	±2
Power supply (battery) VDC	9
Input signal Type/Connector	piezoelectric / BNC neg.
Deg. of protection to IEC/EN 60529	IP50

Characteristics

Practical battery-operated charge amplifier, instant display and evaluation, offers charge amplification, preload testing and evaluation in one and the same instrument. Applications
Measurement with piezoelectric sensors. The instrument operates in two modes:
1. Measurement of mechanical measurands such as force, pressure, strain, torque and acceleration.
2. As a preload tester (charge measurement in pC for preloading sensors).

Accessories

None

Data sheet 5995A_000-312

Insulation Tester

Technical data	Туре 5493А
Number of channels	1
Measuring range adjustment	-
Measuring range FS Ω	10 ¹¹ 4·10 ¹³
Measuring voltage V	5
Max. parallel capacitance nF	10
(cable length) m	100
Power supply (battery) VDC	VDC 9
Input signal Type/Connector	BNC neg.
Deg. of protection to IEC/EN 60529	IP50

Characteristics

Service device for measuring insulation resistance. Logarithmic display, extremely simple operation, switches off automatically when not in use.

Applications

Battery powered tester ideal for routine and field checking of piezoelectric sensors, charge amplifiers and cables. Accessories None

Data sheet 5493A_000-354

Displacement Sensors

Potentiometric Displacement Sensor Type TS with Actuating Shaft and Ball Coupling

Technical data		Туре 2117А25	Туре 2117А75	Туре 2117А100	Туре 2117А150
Measuring range	mm	0 25	0 75	0 100	0 150
Case length A	mm	63	113	138	188
Mechanical stroke	mm	30	80	105	155
Weight	g	86	132	150	190

General technical data

Deg. of protection to IEC/EN 60529	IP40
Max. speed m/s	10
Connector	5-pole connector

Characteristics

Displacement sensor with dualbearing actuating shaft, ball coupling to avoid shear force. Applications Force-displacement monitoring Data sheet 000-504

Potentiometric Displacement Sensor Type TR with Restoring Spring

Technical data		Туре 2118А10	Type 2118A25	Туре 2118А50	Type 2118A75
Measuring range	mm	0 10	0 25	0 50	0 75
Case length A	mm	48	63	94,4	134,4
Mechanical stroke	mm	15	30	55	80
Weight	g	80	120	150	180

General technical data	
Deg. of protection to IEC/EN 60529	IP40
Max. speed m/s	10
Connector	Type 2118Axx: flying leads Type 2118AxxA01: 5-pole cable connector

Characteristics Displacement sensor with restoring spring, dual-bearing actuating shaft, sensor tip with carbide ball. Applications Force-displacement monitoring Data sheet 000-504

Potentiometric Displacement Sensor Type TRS with Restoring Spring

Technical data		Type 2112A25	Туре 2112А50	Туре 2112А75	Туре 2112А100
Measuring range	mm	0 25	0 50	0 75	0 100
Case length A	mm	63	94,4	134,4	166
Mechanical stroke	mm	30	55	80	105
Weight	g	74	100	128	150

Genera	l technical	data

Deg. of protection to IEC/EN 60529	IP40
Max. speed m/s	10
Connector	5-pole connector

Characteristics

Displacement sensor with restoring spring, dual-bearing actuating shaft, sensor tip with carbide ball.


Applications Force-displacement monitoring

lacement monitoring

Data sheet 000-504

Displacement Sensors

Potentiometric Displacement Sensor Type TLH with Side Slider

Technical data		Туре 2119А100	Туре 2119А225	Туре 2119А1250
Measuring range	mm	0 100	0 225	0 1 250
Case length A	mm	250	376	1 418
Mechanical stroke	mm	108	234	1 276
Weight	g	440	620	2 110

General technical data

Deg. of protection to IEC/EN 60529	IP40
Max. speed m/s	10
Connector	4-pole DIN 43650 (hydraulic connector)

Characteristics

Applications Force-displacement monitoring Data sheet 000-504

Displacement sensor with side slider; ball coupling to avoid shear force.

Potentiometric Displacement Sensor Type LWG with Twin-Bearing Actuating Rod

Technical data		Туре 2121А75	Туре 2121А100	Type 2121A150	Туре 2121А225
Measuring range	mm	0 75	0 100	0 150	0 225
Case length A	mm	201	227	277	354
Mechanical stroke	mm	79	105	155	231
Weight	g	400	500	600	700

Technical data		Туре 2121А300	Туре 2121А360	Туре 2121А450	Туре 2121А500
Measuring range	mm	0 300	0 360	0 450	0 500
Case length A	mm	430	505	619	684
Mechanical stroke	mm	307	368	460	510
Weight	g	800	850	900	1 300

Technical data		Туре 2121А750
Measuring range	mm	0 750
Case length A	mm	994
Mechanical stroke	mm	764
Weight	g	1 900

General technical data

Deg. of protection to IEC/EN 60529		IP65
Max. speed	m/s	5
Connector		3-pole connector

Characteristics

Displacement sensor with twinbearing actuating shaft; backlashfree pivot head attachment. Applications Force-displacement monitoring Data sheet 000-504

Technical Literature

Special Reprints and Application Brochures

The Basics of Piezoelectric Me ing Technology	easur-
Guide to the Measurement of Force	20.193
Piezoelectric Theory	20.290
Measuring with Crystals (book published by Verlag Moderne Industrie)	
ISBN 3-478-93269-6)	900-335
Piezoelectric Sensors – Extending Function and Simplifying Applications	,
with Microelectronics	920-228
Investigation of Piezoelectric Force Measuring Devices in Force Calibration	
and Force Standard Machines	920-232
Dynamic Properties and Investigation	
of Piezoelectric Force Measuring Devices	920-233
Anwendungsgerechte Kalibrierung	
von Drehmomentaufnehmern	920-339

The references are Kistler Group document numbers. Most of these documents are available for downloading from www.kistler.com.

Monitoring of Manufacturing sembly and Testing Processes	
Electromechanical NC	
Joining Systems	300-542
Monitored Press-Fitting	
and Joining Processes	920-223
Process Monitoring – for Better Quality	
and Increased Production	920-224
Simple Monitoring of Joining Processes	
through Force-Strain Measurement	920-236
Reliable Connection through	
Monitoring of Joining Forces	920-351
From Sensor to Transmitter - Robust Industrial Sensors through Integration	
of Electronics	920-361
General Force Measurement	
The ITEA Journal of Test and Evaluation,	
Force-limited Vibration Tests at JPL	920-268
Force and Moment Measurements in Aerodynamics and Aeroelasticity	

Using Piezoelectric Transducers 920-363

Electrode Force Measurement –	
Spot Welds that Stay	300-3
Force Measurement in	
Resistance Welding	920-3
Force Monitoring Optimizes	
Resistance Welding and Related	
Joining Processes	920-3
Monitoring of Cutting Process	es
New Rotating Dynamometer for	
High Speed Cutting Processes	920-2
High Speed Cutting Processes Advanced Cutting Process Analysis -	920-2
	920-2
Advanced Cutting Process Analysis -	920-2
Advanced Cutting Process Analysis - Practical Experience with the Rotating High Speed Dynamometer	<u> </u>
Advanced Cutting Process Analysis - Practical Experience with the Rotating	<u> </u>
Advanced Cutting Process Analysis - Practical Experience with the Rotating High Speed Dynamometer Sensors and Signal Analysis	920-3

Test Stand Systems for Electric Motors and Gearboxes in the Laboratory, Manufacturing and Quality Assurance 300-604

Product Overview by Type Numbers

Type Page	Type Page	Type Page	Туре	Page	Туре	Page	Туре	Page	Туре	Page	Туре	Page
1200A121A1 147	1891 145	2151B30154002 134	2303A37	162	5825A1	126	9147B	75	9377C	95	9545	153
1200A121A2 147	1923A 141	2151B60154002 134	2303A50	162	5863A1	122	9173B	76	9378C	95	9547	154
1200A121A3 147	1939A 139	2151B60304002 134	2303A62	162	5863A2	123	9174B	76	9389A	106	9549	152
	1941A 139	2152A35450 135	2303A75	162	5875A	121	9175B	76			9553	153
1601B 142	<u>1943A</u> 140	2153A030200 136	4504.4		5885A*	125	9176B	76	9410A0	149	9555	153
<u>1603B</u> <u>142</u> <u>1609B</u> <u>141</u>	<u>1945A</u> 140 1951A 141	2153A030400 136 2153A060200 136	4501A 4502A	109 109	5995A	165	9203		9410A2 9410A3	149 149	9557 9559	154 152
1610A 141	1957A 139	2153A060200 136 2153A060400 136	4503A	110		105	9203	77	9410A3	149	9563	152
1615B 142	1967A 140	2153A100200 136	4504A	111	9001A	72	9207	78	9410A5	149	9565	153
1619B 141	1969A 140	2153A100400 136	4576A0,5	86	9011A	72	9211	76	9410A6	149	9567	154
1631C 139	1971A1 142	2153A200400 136	4576A1	86	9016B4	89	9213	77	9410A7	149	9569	152
1633C 139	1971A2 143	2153A300400 136	4576A10	86	9017B	89	9215	79	9420A01	149	9573	153
1635C 139	1973AX1 143	2157A1 133	4576A100	86	9018B	89	9217A	79	9420A11	149	9575	153
<u>1637C</u> 142 1641A 139	<u>1973AX2</u> 143 1979A 140	2157A2 133 2157A3 133	4576A2 4576A20	86 86	9021A 9031A	72	9232A 9237A	101 100	9420A21 9420A31	149	9577 9579	154 152
1651A 139	<u>1979A</u> 140 1983AB 141	215/A3 133	4576A20	86	903 TA 9039	105	9237A 9238A	100	9420A31 9420A41	149 149	9579 9580A0	152
1651C 141	1983AC 141	2300A10 156	4576A5	86	9041A	72	9241C	100	9420A51	149	9580A0	154
1677A5 144	1983AD 139	2300A10A 159	4576A50	86	9046C4	90	9243B	102	9420A61	149	9580A2	154
1679A5 144		2300A10S 157	4577A0,1	87	9047C	90	9245B2	103	9420A71	149	9580A4	154
1687B5 144	2112A100 166	2300A100 156	4577A0,2	87	9048C	90	9245B3	103	9422A01	150	9580A7	154
1689B5 144	2112A25 166	2300A100A 159	4577A0,5	87	9049	105	9247A	103	9422A11	150	9580A8	154
1696A 144	2112A50 166	2300A100F 158	4577A1	87	9051A	72	9250A4	89	9422A21	150	9580A9	154
1697A 144	2112A75 166	2300A100H 159	4577A10	87	9061A	72	9251A	89	9422A31	150	9582A0	152
1698AA 143	2117A100 166	2300A100S 157	4577A100	87	9066A4	90	9251A4	89	9422A41	150	9582A1	152
<u>1698AB</u> 143 1698AC 143	2117A150 166 2117A25 166	2300A25 156 2300A25A 159	4577A2 4577A20	87 87	9066C4 9067	91 90	9252A 9254		9422A51 9451A	150 150	9582A2 9584A0	152 155
1098AC 145	2117A25 166	2300A25F 159 2300A25F 158	4577A200	87	9067A4	90	9255B		9455	150	9584A1	155
1700A29 145	2118A10 166	2300A25H 159	4577A5	87	9067C	91	9256C1	97	9459	151	9584A2	155
1701 145	2118A25 166	2300A25S 157	4577A50	87	9068	90	9256C2	97	9461	151	9584A9	155
1703 145	2118A50 166	2300A300 156			9068C	91	9257B	98	9463	151	9586A0	155
1705 145	2118A75 166	2300A300A 159	4700A	126	9069	105	9272	98	9465	151	9586A1	155
1711 145	2119A100 167	2300A300F 158	4701A	119	9071A	72	9275	107			9586A2	155
1713 145	2119A1250 167	2300A300H 159	4706A	130	9076C4	92	9277A25	108	9500A0	152	9586A9	155
1721 145	2119A225 167	2300A300S 157	4733A	128	9077C	92	9277A5	108	9500A00	152	9594A1	154
1723 145 1729A 145	2121A100 167 2121A150 167	2300A40 156 2300A40A 159	4734A 4735A	137 130	9078C 9081A	92 72	9301B	80	9500A01 9500A1	152 152	9601A11	83
1733 145	2121A150 167 2121A225 167	2300A40A 159 2300A40F 158	4737A	130	9091A	72	9311B	80	9500A1	152	9601A21	
1743 145	2121A300 167	2300A40H 159					9313AA1	81	9500A3	152	9601A31	95
1749 145	2121A360 167	2300A40S 157	5015A	113	9101A	73	9313AA2	81	9500A4	152	9601A32	
1787A 145	2121A450 167	2300A500 156	5027A	116	9102A	73	9317B	92	9500A5	152	9602A1	84
	2121A500 167	2300A500A 159	5030A	116	9103A	73	9321B	80	9500A6	152	9602A3	96
1851 145	2121A75 167	2300A500F 158	5037B1	117	9104A	73	9323A	81	9500A7	152	9602AA	84
1853 146	2121A750 167	2300A500H 159	5037B3Y3		9105A	73	9323AA	81	9501A0	154		
1855 146	2151B02012001 134	2300A500S 157	5041E	117	9106A 9107A	73	9327A 9328A	93 93	9501A1 9501A2	154	9831C1 9831C2	85 85
<u>1861A</u> 145 1865 146	2151B05012001 134 2151B05022001 134	2300A850 156 2300A850A 159	5058A 5070Ax0xxx	118 114	9130B	73	9329A 9329A	106	9501A2	154 154	9831C2	85
1871 145	2151B10012001 134	2300A850F 158	5070Ax1xxx	114	9130BA	74	9331B	80	9501/4	154	9833C1	85
1873 146	2151B10022001 134	2300A850H 159	5070Ax2xxx	114	9131B	74	9333A	81	9501A5	154	9833C2	85
1875 146	2151B10052001 134	2300A850S 157	5073A1	115	9131BA	74	9337A40	82	9501A6	154	9833C3	85
		2301A15 160	5073A2	115	9132B	74	9337A40U	82	9501A7	154		
COMPLEX ® COMPN		2301A150 160	5073A3	115	9132BA	74	9339A	106	9505	153	9931A1	83
CoMo Logic [®] , CoMo N CoMo Sys [®] * are registe		2301A1500 160	5073A4	115	9133B	74	9341B	80	9509	152	9931A2	83
Kistler Holding AG, Wir		2301A200 160	5073A5	115	9133BA	74	9343A	81	9513	153	9931A3	83
-		2301A30 160 2301A300 160	5321A	164	9134B 9134BA	74 74	9345B 9347C	82, 107 93	9515 9517	153 154	9931A4	83
Windows [®] and Window trademarks of Microsof	•	2301A500 160 2301A500 160	5361A	164	9135B	74	9347C	93	9519	154	KSM00051	7 147
		2301A60 160	5371A	164	9135BA	74	9349A	106	9523	152	KSM00070	
°	ademark of DuPont Per-	2301A80 160			9136B	74	9351B	80	9525	153	KSM00082	
formance Elastomers.		2301A800 160	5405A	163	9136BA	74	9361B	80	9527	154	KSM07186	
Kapton [®] is a registered	trademark of DuPont.	2302A25 161	5407A	163	9137B	74	9363A	81	9529	152	KSM10382	0-5 146
		2302A37 161	5417	163	9137BA	74	9365B	82, 107	9533	153	KSM12497	
* Only available in Ger	many	2302A50 161	5433	163	9143B	75	9366CC	94	9535	153	KSM18315	
		2302A62 161	5493A	165	9144B	75	9367C	94	9537	154	KSM21971	0-5 146
		2302A75 161 2303A25 162	5629A2	124	9145B 9146B	75 75	9369A 9371B	106 80	9539 9543	152 153		
		2303723 102		124								

Kistler worldwide

Europe

Austria

Kistler GmbH Lemböckgasse 49f 1230 Wien Tel. +43 1 867 48 67 0 sales.at@kistler.com

Czech Republic/Slovakia

Kistler, s.r.o. Zelený pruh 99/1560 140 00 Praha 4 Tel. +420 296 374 878 sales.cz@kistler.com

Denmark/Norway/Sweden

Kistler Nordic AB Aminogatan 34 431 53 Mölndal Tel. +46 31 871 566 info.se@kistler.com

Finland

Kistler Nordic AB Särkiniementie 3 00210 Helsinki Tel. +358 9 612 15 66 info.fi@kistler.com

Asia

China, People's Republic of Kistler China Ltd. Unit D, 24/F Seabright Plaza 9-23 Shell Street North Point Hong Kong Tel. +852 25 915 930 sales.cn@kistler.com

India

Kistler Instruments (Pte) Ltd. India Liaison Office 2B Century Plaza 560/562 Anna Salai Teynampet, Chennai 600 018 Tel. +91 44 4213 2089 sales.in@kistler.com

Japan

Kistler Japan Co., Ltd. 23rd floor, New Pier Takeshiba North Tower 1-11-1, Kaigan, Minato-ku Tokyo 105-0022 Tel. +81 3 3578 0271 sales.jp@kistler.com

Headquarters

Switzerland

Kistler Group Eulachstrasse 22, 8408 Winterthur Tel. +41 52 224 11 11 Fax +41 52 224 14 14 info@kistler.com

France

Kistler France ZA de Courtabœuf 1 15, avenue du Hoggar 91953 Les Ulis cedex Tel. +33 1 69 18 81 81 info.fr@kistler.com

Germany

Kistler Instrumente GmbH Daimlerstrasse 6 73760 Ostfildern Tel. +49 711 34 07 0 info.de@kistler.com

Italy

Kistler Italia s.r.l. Via Ruggero di Lauria, 12/B 20149 Milano Tel. +39 02 481 27 51 sales.it@kistler.com

Netherlands

Kistler B.V. Nederland Leeghwaterstraat 25 2811 DT Reeuwijk Tel. +31 182 304 444 sales.nl@kistler.com

Korea, Republic of

Kistler Korea Co., Ltd. Gyeonggi Venture Anyang Technical College Center 801 572-5, Anyang-Dong, Manan-Gu, Anyang-City, Gyeonggi-Do 430-731 Tel. +82 31 465 6013 sales.kr@kistler.com

Singapore

Kistler Instruments (Pte) Ltd. 50 Bukit Batok Street 23 #04-06 Midview Building Singapore 659578 Tel. +65 6316 7331 sales.sg@kistler.com

Taiwan

Kistler Representative Office in Taiwan Room 9, 8F, No. 6, Lane 180 Sec. 6, Mincyuan E. Road Taipei 114 Tel. +886 2 7721 2121 sales.tw@kistler.com

Thailand

Kistler Instrument (Thailand) Co., Ltd. 26/56 TPI Tower, 20th Floor Nanglingee Rd., (Chan Tat Mai Rd.) Thungmahamek, Sathorn Bangkok 10120 Tel. +66 2678 6779-80 sales.thai@kistler.com

Switzerland/Liechtenstein

Kistler Instrumente AG Verkauf Schweiz Eulachstrasse 22 8408 Winterthur Tel. +41 52 224 12 32 sales.ch@kistler.com

United Kingdom

Kistler Instruments Ltd. 13 Murrell Green Business Park London Road Hook, Hampshire RG27 9GR Tel. +44 1256 74 15 50 sales.uk@kistler.com

America

USA/Canada/Mexico Kistler Instrument Corp. 75 John Glenn Drive Amherst, NY 14228-2171 Tel. +1 716 691 5100 sales.us@kistler.com

Australia

Australia

Kistler Instruments Australia Pty Ltd G21 / 202 Jells Rd. Wheelers Hill, Victoria 3150 Tel. +61 3 9560 5055 sales.au@kistler.com

Other countries

Kistler Instrumente AG Export Sales Eulachstrasse 22, 8408 Winterthur Switzerland Tel. +41 52 224 11 11 sales.export@kistler.com

www.kistler.com

measure. analyze. innovate.