

3-Component Force Link

120 x 120 x 125 mm up to 100 kN

Quartz force link for measuring the three orthogonal components of a dynamic or quasistatic force acting in an arbitrary direction.

- · Calibrated force link
- High rigidity
- · Minimal cross talk
- Simple installation
- · Multipol connector

Description

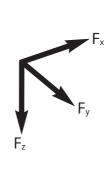
The force sensor is mounted under preload between two plates and, therefore can measure compression and tensile forces. The quartz element yields an electric charge which is proportional to the force. This is picked off by electrodes and transferred via a connector. The charge signal is fed via a screened cable to a charge amplifier, which converts it into a proportional output voltage. An appropriate evaluation circuit can record and further process the measurand.

The sensor is mounted ground-isolated. This largely eliminates ground loop problems.

Application

The quartz force links can measure the 3 orthogonal force components easily, directly and precisely, because these sensors feature an inherently low cross talk.

The elastic behaviour of the test object is practically not influenced. Quasistatic measurements, are possible, too. The force link is supplied calibrated. After correct installation, it is immediately ready for use without re-calibration.


Thanks to their high rigidity they cover a wide frequency range.

Application examples

- Cutting forces
- Impact forces
- Reaction forces in rockets
- Dynamic forces on shakers
- · Determination of coefficients of friction

Type 9377B, 9378B

Technical Data

			I
Range	F _x , F _y	kN	-60 60
(Without moments if e.g. four			
force links are mounted into			
one force plate)			
Range	F _x , F _y	kN	–15 15
(Example with point of force			
appl. F _{x,y} 25 mm above top plate)			
Range	F _z	kN	-100 100
(Point of force application			
F _z centric)			
Overload		%	10
Calibrated range	F _x , F _y	kN	0 30
(Point of force application F _{x,y}			0 3
40 mm below top plate surface)			
Calibrated range	F _z	kN	0 100
(Point of force appl. Fz centric)			0 10
Max. moments			
$M_{x,y}$	$M_z = 0$	Nm	-2 600/2 600
	$F_z = 0$		
Mz	$M_{x,y} = 0$	Nm	-1 550/1 550
	$F_z = 0$		

measure. analyze. innovate.

Threshold		N	<0,01
Sensitivity	F _x , F _y	pC/N	≈-4,0
	Fz	pC/N	≈–1,95
Linearity, each axis		% FSO	≤±0,5
Hysteresis, each axis		% FSO	≤0,5
Cross talk	F _z -> F _x , F _y	%	≤±1
(Cross talk $F_x, F_y \rightarrow F_z$	$F_z \rightarrow F_x, F_y$ $F_x \leftarrow F_y$	%	≤±2
is ≤±2 % if e.g. four force	F_x , $F_y \rightarrow F_z$	%	≤±3
links are mounted into			
one force plate)			

Rigidity	c _x , c _y	N/µm	≈1 800
	Cz	N/µm	≈8 000
Natural frequency	f _n (x)	kHz	-≈1,9
	f _n (y)	kHz	-≈1,9
	f _n (z)	kHz	-≈4,2
Operating temperature		°C	<i>–</i> 50 80
range			
Insulation resistance		Ω	≥10 ¹³
Ground insulation		Ω	≥10 ⁸
Capacitance, each channel		pF	≈900
Connector			3 pole M8 x 0,75
Weight		kg	10,5

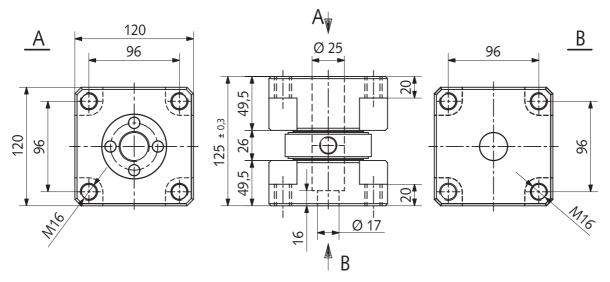


Fig. 1: Dimensions 3-Component Force Link

Types 9377B and 9378B

The force links Types 9377B and 9378B differ only in the position of the coordinate system relative to the sensor case (see Fig. 2). The technical data of both types are identical. When combining the Types 9377B and 9378B in a force plate with four force links, the position of the coordinate system relative to the connectors can be chosen as desired (see also Fig. 3).

Type 9378B

Fig. 2: 3-Component Force Link Type 9377B and Type 9378B

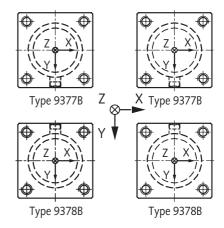


Fig. 3: Force plate with four force links consisting 3-Component Force Links, two of each Type 9377B and Type 9378B

measure, analyze, innovate.

Mountings

The contact surfaces that transfer the forces onto the force link must be flat, rigid and clean.

When four force links are used to construct a force plate, they must be machined to the same level.

The force links can be fastened either from outside with four screws M16 in each case or from the center again in each case with four screws M14.

The screws must be tightened sufficiently so that even with maximum force exerted, no gap occurs between the contact surfaces.

Force Introduction

When only a single force link is used, then as far as possible, the center of pressure should be within the cover plate.

Eccentric force introduction produces a moment of force on the sensor element and is permitted only up to specified values. If such a moment prevails, then the areas of force must be reduced accordingly.

A rigidly constructed force plate with four force links largely prevents moment stresses on the sensor element.

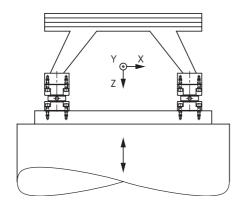


Fig. 4: Force limited vibration testing

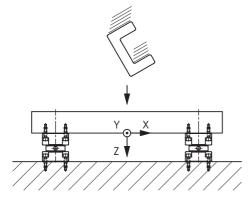


Fig. 5: Drop test measurement

Parallel Switching

Several force links of identical sensitivities can be paralleled directly. The charge amplifier connected then gives an output voltage which corresponds to the sum of all forces acting.

This is a great advantage when building force plates with which only the 3 components of the resulting force must be measured.

Electronics

Besides the force sensors, a 3-component force measuring system also requires 3 charge amplifiers, which convert the electrical charge signals of the sensor into voltages exactly proportional to the three components F_x , F_y and F_z of the acting force.

In order to construct multicomponent force links for measuring three forces and three moments, special multichannel charge amplifiers are available.

Systems for Multicomponent Measurements

Information concerning cable concept see Data sheet of Systems for Multicomponent Measurements (000-183).

Optional Accessories	Туре
 Connecting cable 	1693A
 Connecting cable 	1694A
 Connecting cable 	1695A

Ordering Key Type 3-Component Force Link 9377B

• with standard coordinate system (see Fig. 2)

3-Component Force Link 9378B

• like Type 9377B, but with coordinate system rotated 180° about z-axis (see Fig. 2)