

# **SCP for Combustion Engines**

## Signal Conditioning System, with optional PiezoSmart®

The "Signal Conditioning Platforms" SCP and SCP-Compact are modular systems for the conditioning of a wide range of different measuring signals, such as signals from piezoelectric and piezoresistive pressure sensors. They are specifically well suited for combustion pressure measurements on engine test beds and in-vehicle applications.

The key features for SCP and SCP-Compact are:

- Modular design for maximum flexibility (up to 32 channels)
- Improved interference resistance of measuring signals
- Remote controlled via any PC
- Power supply with voltage range from 100 ... 240 VAC and 10 ... 36 VDC
- Graphical User Interface (GUI)
- Function and signal compatible with all combustion analyzers
- PiezoSmart sensor identification for increased process reliability and improved data quality

#### Description

The SCP and SCP-Compact largely consists of a base unit and function-specific measuring modules. For combustion pressure measurements and combustion analysis on engines, a wide range of different and interchangeable measuring modules for front-end signal conditioning is available.

If the automatic sensor identification PiezoSmart is used, all relevant data of an individual sensor are stored on a TEDS (Transducer Electronic Data Sheet) and are available for automatic setting of parameters and adjustments.

Though process reliability of test procedures and quality of measurement data are significantly improved by simultaneously simplifying test bed setup and test preparations.

#### Application

With the function-specific modules, measuring tasks within combustion pressure and gas exchange, as well as injection pressure and general pressure measurements are efficiently accomplished.

Due to the small dimensions and low voltage power supply, SCP-Compact is most suited for in-vehicle testing.



SCP for 8 Measuring Modules Type 2853A...



SCP-Compact for 6 Measuring Modules Type 2854A...



SCP-Compact for 4 Measuring Modules Type 2854A...

#### Available Software Interfaces (in Preparation):

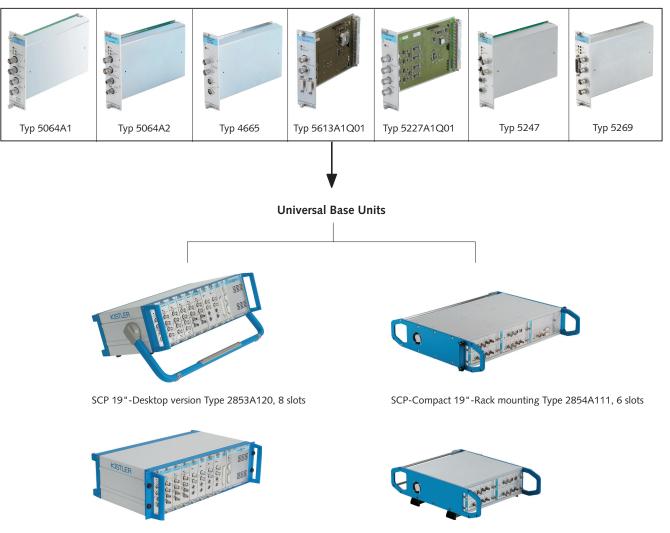
- FEV CAS
- D2T OSIRIS
- A&D CAS
- ONO SOKKI DS-2000
- (AVL INDICOM)
- (DEWETRON)

Page 1/13

This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.

©2007, Kistler Instrumente AG, Eulachstrasse 22, 8408 Winterthur, Switzerland Tel. +41 52 224 11 11, Fax +41 52 224 14 14, info@kistler.com, www.kistler.com

Types 2853A..., 2854A..., 4665, 5064A..., 5225A1, 5227A..., 5247, 5613A..., 5269...




#### Modules for Signal Conditioning System

The following function specific measuring modules are available:

- Charge amplifier without sensor identification Type 5064A1
- Charge amplifier with sensor identification Type 5064A2
- Piezoresistive amplifier with sensor identification Type 4665
- Amplifier interface Type 5613A1Q01
- Voltage amplifier Type 5227A1Q01
- Needle hub amplifier Type 5247
- pMax Module Type 5269

### Available Measuring Modules



SCP 19"-Rack mounting Type 2853A110, 8 slots

SCP-Compact Type 2854A131, 4 slots

#### Page 2/13

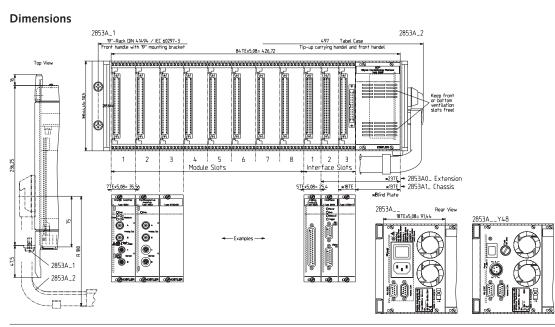
This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.



#### Technical Data, SCP Base Unit Type 2853A...

| Chassis                      |                                |                  |
|------------------------------|--------------------------------|------------------|
| Module cards                 | max.                           | 8                |
| Channels per Rack            | max.                           | 16               |
| with rack combination        | max.                           | 32               |
| Degree of protection         | IP                             | 40               |
| Dimensions 19"-Rack mounting |                                |                  |
| Height                       | HE (mm)                        | 3 (132,5)        |
| Width                        | TE (mm)                        | 84 (426,7)       |
| Depth (incl. outgoing cable) | mm                             | min. 350         |
| Weight (without modules)     | kg                             | ≈5,6             |
| Software                     | Graphical User Interface (GUI) |                  |
|                              | COM compor                     | nents for Micro- |
|                              | soft Windows                   | 5 NT, 2000, XP   |

#### **AC Power Supply**


| Power                                    | VAC          | 100 240 ±10% |
|------------------------------------------|--------------|--------------|
| Power line frequency                     | Hz           | 48 62        |
| Power consumption max.                   | VA           | 95           |
| Operating temperature range <sup>,</sup> | °C           | 0 60         |
| Min/Max temperature range <sup>10</sup>  | °C           | -40 60       |
| Power connector (2P+E, Protect           | ion class I) | IEC 320C14   |

#### **DC Power Supply**

| ,                                      |     |                      |
|----------------------------------------|-----|----------------------|
| Power supply                           | VDC | 11 36                |
| Max. power consumption                 | W   | 80                   |
| Inrush current                         | А   | ≈15                  |
| Fuse                                   |     | 8A (slow-blow) (SPT) |
| Operating temperature range            | °C  | 0 50                 |
| Min/Max temperature range <sup>1</sup> | °C  | -40 50               |
|                                        |     |                      |

<sup>10</sup> non condensing

2854A\_000-409e-10.07



Page 3/13

This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.

©2007, Kistler Instrumente AG, Eulachstrasse 22, 8408 Winterthur, Switzerland Tel. +41 52 224 11 11, Fax +41 52 224 14 14, info@kistler.com, www.kistler.com

#### Analog interface card (Type 5225A1)

| Analog outputs                |      | 32                |
|-------------------------------|------|-------------------|
| Voltage                       | V    | 0 ±10             |
| Current (per channel)         | mA   | 0 ±2              |
| Error                         | %    | <±0,1             |
| Trigger output (optocouplers) |      |                   |
| High                          | V    | >2,4              |
| Low                           | V    | <0,8              |
| Pull-up on +5 V RS            | kΩ   | 10                |
| Connection                    | Туре | D-Sub 37 pin neg. |

#### CPU interface card Type 5615 (Type 2853A110 and Type 2853A120)

| Interface                      | Туре  | RS-232C                 |
|--------------------------------|-------|-------------------------|
| Trigger/Operate input          | _     | connected to type       |
| (Optokoppler)                  |       | 5225A1 via optocouplers |
|                                |       | (only trigger)          |
| High                           | V     | 3 30                    |
| Low                            | V     | <2                      |
| Current input High             | mA    | 2 29                    |
| Pull-up on +24 V (connectible) | kΩ    | 10                      |
| Pull-down on DGND (connectibl  | e) kΩ | 1                       |
| Connection                     | Туре  | D-Sub 9 pin neg.        |
| Digital outputs                | -     | isolated solid          |
| DOUTA1 B4                      |       | state relay             |
| Current load (continuous)      | mA    | <100                    |
| Voltage (continuous)           | V     | <±42                    |
| Voltage for external devices   | V     | 24                      |
| Current draw max.              | mA    | 50                      |
| Connection                     | Туре  | D-Sub 15 pin neg.       |
|                                |       |                         |



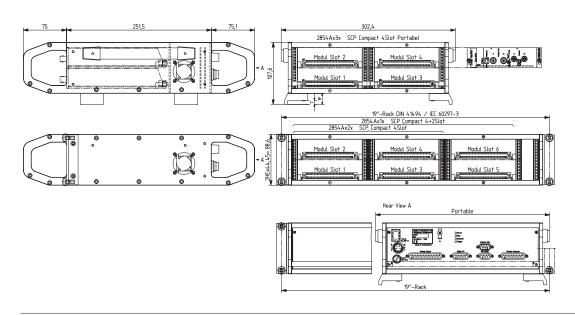
#### Technical Data, SCP Base Unit Type 2854A...

| Module cards                              | max.                           | 4/6                 |  |
|-------------------------------------------|--------------------------------|---------------------|--|
| Channels per Rack                         | max.                           | 8/12                |  |
| Power supply                              |                                |                     |  |
| Standard                                  | VDC                            | 10 36               |  |
| With external power supply                | VAC                            | 100 240 ±10 %       |  |
| Power consumption max.                    | VA                             | 70                  |  |
| Inrush current                            | А                              | ≈15                 |  |
| Degree of protection                      | IP                             | 40                  |  |
| Fuse                                      | 8                              | A (slow-blow) (SPT) |  |
| Operating temperature range <sup>1)</sup> | °C                             | 0 50                |  |
| Min/Max temperature range <sup>1)</sup>   | °C                             | -40 50              |  |
| Dimensions Type 2854A111/121              |                                |                     |  |
| Height                                    | HE (mm)                        | 2 (88,6)            |  |
| Width                                     | TE (mm)                        | 84 (426,72)         |  |
| Depth                                     | mm                             | min. 400            |  |
| Dimensions Type 2854A131/132              |                                |                     |  |
| Height                                    | HE (mm)                        | 107,6               |  |
| Width                                     | TE (mm)                        | 302,4               |  |
| Depth                                     | mm                             | min. 400            |  |
| Weight (without modules)                  | kg                             | ≈3,5                |  |
| Software                                  | Graphical User Interface (GUI) |                     |  |
|                                           | COM components for             |                     |  |
|                                           | Microsoft Windows              |                     |  |
|                                           | NT, 2000,                      | XP                  |  |

#### Analog interface card (integrated)

| Analog outputs                |      | 8/12              |
|-------------------------------|------|-------------------|
| Voltage                       | V    | 0 ±10             |
| Current (per channel)         | mA   | 0 ±2              |
| Error                         | %    | <±0,1             |
| Trigger output (optocouplers) |      |                   |
| High                          | V    | >2,4              |
| Low                           | V    | <0,8              |
| Pull-up on +5 V RS            | kΩ   | 10                |
| Connection                    | Type | D-Sub 37 pin neg. |

#### CPU interface card (integrated)


| Interface  | Туре | RS-232C          |
|------------|------|------------------|
| Connection | Туре | D-Sub 9 pin neg. |

#### Digital I/O

| Trigger/Operate input           | _    | Connected to type       |
|---------------------------------|------|-------------------------|
| (Optokoppler)                   |      | 5225A1 via optocouplers |
|                                 |      | (only trigger)          |
| High                            | V    | 3 30                    |
| Low                             | V    | <2                      |
| Current input High              | mΑ   | 2 29                    |
| Pull-up on +24 V (connectible)  | kΩ   | 10                      |
| Pull-down on DGND (connectible) | kΩ   | 1                       |
| Connection                      | Тур  | D-Sub 9 pin neg.        |
| Digital outputs                 | _    | isolated solid          |
| DOUTA1 B4                       |      | state relay             |
| Current load (continuous)       | mΑ   | <100                    |
| Voltage (continuous)            | V    | <±42                    |
| Voltage for external devices    | V    | 24                      |
| Current draw max.               | mΑ   | 50                      |
| Connection                      | Туре | e D-Sub 15 pin neg.     |
|                                 |      |                         |

<sup>1)</sup> non condensing

#### Dimensions



This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.

<sup>©2007,</sup> Kistler Instrumente AG, Eulachstrasse 22, 8408 Winterthur, Switzerland Tel. +41 52 224 11 11, Fax +41 52 224 14 14, info@kistler.com, www.kistler.com



#### Technical Data Valid for all Modules

All values for setting the parameters are stored in a nonvolatile data memory and are automatically loaded on initial startup. Operating the system and setting the parameters are performed exclusively with a PC via GUI or with a host computer.

| Operating temperature range <sup>1</sup> | °C  | 0 60       |
|------------------------------------------|-----|------------|
| Min./max. temperature <sup>1</sup>       | °C  | -40/60     |
| Vibration resistance (20 2 000 Hz,       | gp  | 10         |
| duration 16 min, cycle 2 min)            |     |            |
| Shock resistance (1 ms)                  | g   | 200        |
| Sound resistance                         | dBA | 120        |
| Degree of protection (EN 60529)          | IP  | 40         |
| Front panel dimensions                   | mm  | 128,7x35,0 |
|                                          | HE  | 3          |
|                                          | TE  | 7          |
|                                          |     |            |

non condensing

#### Charge Amplifier Type 5064A1

The module Type 5064A1 is a microprocessor-controlled 2-channel charge amplifier with analog signal conditioning to compensate for load cycling drift in transient mode with uncooled sensors.

Apart from the sensor-specific data to be entered, it is also possible to preselect three different low-pass filters as well as a -8V offset with simultaneous signal gain with a factor of 1,8 for full utilization of the analog/digital converter.

A differential amplifier stage prevents ground loops in each channel. The connecting screw M2x2,5 (on the front of the amplifier module) connects the signal ground at the input to the protective ground (instrument case).



#### Technical Data

| Charge amplifier Type 5064A1                        |              |              |
|-----------------------------------------------------|--------------|--------------|
| Number of channels                                  | _            | 2            |
| Measuring range (resolution <0,1 %)                 |              |              |
| without offset                                      | рС           | ±100 ±50 000 |
| with –8 V offset                                    | рС           | ±162 ±50 000 |
| Error (0 60 °C)                                     | %            | <±0,5        |
| typical                                             | %            | <±0,2        |
| Drift "Long"                                        |              |              |
| at 0 60 °C                                          | pC/s         | <±0,2        |
| at 25 °C                                            | pC/s         | <±0,05       |
| typical                                             | pC/s         | <±0,03       |
| Reset-operate transition ("Long")                   | рС           | <±1          |
| Time constant ("Long")                              | S            | >10 000      |
| Output voltage                                      | V            | 0 ±10        |
| Output current                                      | mA           | 0 ±2         |
| Output impedance                                    | Ω            | 10           |
| Zero point error (Reset)                            | mV           | <±5          |
| Output noise (0,1 Hz 1 MHz)                         | $mV_{_{PP}}$ | <5           |
| Frequency range (20 V <sub>PP</sub> )               | kHz          | ≈0 >90       |
| Group delay time                                    | μs           | <4           |
| Low-pass filter (2 <sup>nd</sup> order, selectable) | kHz          | 5, 10, 20    |
| "Overload" threshold                                | V            | ≈±10,5       |
| Offset adjustable (gain 1,8)                        | V            | -8,0 ±0,05   |
| Max. voltage between                                |              |              |
| sensor GND and output/supply GND                    | V            | <±25         |
| Common mode noise rejection                         |              |              |
| (0 100 Hz)                                          | dB           | >60          |
| Crosstalk attenuation Ch1, Ch2                      | dB           | >80          |
| Power supply (module)                               | _            | via SCP      |
| Weight                                              | kg           | 0,41         |
| Drift Compensation (selectable)                     |              |              |
| Zero point deviation                                | mV           | <±5          |
| Amplitude error at 5 Hz (represents a               |              | (1)          |
| speed of 600 1/min on a four-stroke engine)         | %            | <1           |
|                                                     | /0           |              |
| Connections                                         |              |              |
| Signal inputs                                       | Type         | BNC neg      |

Signal inputs Туре BNC neg.

Page 5/13

This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.



#### Charge Amplifier Type 5064A2

This charge amplifier is a signal conditioning unit which is exactly identical to Type 5064A1 but includes sensor identification.

Apart from the sensor-specific data to be entered, it is also possible to preselect three different low-pass filters as well as a -8V offset with simultaneous signal gain with a factor of 1,8 for full utilization of the analog/digital converter.

A differential amplifier stage prevents ground loops in each channel. The connecting screw M2x2,5 (on the front of the amplifier module) connects the signal ground at the input to the protective ground (instrument case).

#### Technical Data

| Number of channels                                  | _            | 2            |
|-----------------------------------------------------|--------------|--------------|
| Measuring range (resolution <0,1 %)                 |              |              |
| without offset                                      | рС           | ±100 ±50 000 |
| with –8 V offset                                    | рС           | ±162 ±50 000 |
| Error (0 60 °C)                                     | %            | <±0,5        |
| typical                                             | %            | <±0,2        |
| Drift "Long"                                        |              |              |
| at 0 60 °C                                          | pC/s         | <±0,2        |
| at 25 °C                                            | pC/s         | <±0,05       |
| typical                                             | pC/s         | <±0,03       |
| Reset-operate transition ("Long")                   | рС           | <±1          |
| Time constant ("Long")                              | S            | >10 000      |
| Output voltage                                      | V            | 0 ±10        |
| Output current                                      | mA           | 0 ±2         |
| Output impedance                                    | Ω            | 10           |
| Zero point error (Reset)                            | mV           | <±5          |
| Output noise (0,1 Hz 1 MHz)                         | $mV_{_{pp}}$ | <5           |
| Frequency range (20 V <sub>PP</sub> )               | kHz          | ≈0 >90       |
| Group delay time                                    | μs           | <4           |
| Low-pass filter (2 <sup>nd</sup> order, selectable) | kHz          | 5, 10, 20    |
| "Overload" threshold                                | V            | ≈±10,5       |
| Offset adjustable (gain 1,8)                        | V            | -8,0 ±0,05   |
| Max. voltage between                                |              |              |
| sensor GND and output/supply GND                    | V            | <±25         |
| Common mode noise rejection                         |              |              |
| (0 100 Hz)                                          | dB           | >60          |
| Crosstalk attenuation Ch1, Ch2                      | dB           | >80          |
| Power supply (module)                               | _            | via SCP      |
| Weight                                              | kg           | 0,42         |

#### Interface, Sensor Detection

| Connection according to IEEE1451.4        | _  | -      |
|-------------------------------------------|----|--------|
| Max. length for triax extension cable     | m  | 10     |
| Temperature range for PiezoSmart-coupling | °C | -20 85 |

Connections

| Signal inputs              | Туре       | TRIAX       |
|----------------------------|------------|-------------|
| Signal outputs             | Туре       | BNC neg.    |
| Actuation, outputs, supply | Type 64 pi | n DIN 41612 |

This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.

©2007, Kistler Instrumente AG, Eulachstrasse 22, 8408 Winterthur, Switzerland Tel. +41 52 224 11 11, Fax +41 52 224 14 14, info@kistler.com, www.kistler.com

Page 6/13



#### Piezoresistive Amplifier Type 4665

The measuring module Type 4665 is a microprocessor-controlled 2-channel amplifier for piezoresistive sensors with analog signal conditioning, automatic sensor identification Piezo-Smart, adjustable value, supply current sensor and zeropoint.

This measuring module is used for signal amplification of piezoresistive pressure sensors and is used typically for measuring injection pressure as well as the pressures in the inlet / exhaust element of combustion engines.

In addition to the input of sensor-specific data, parameter settings also allow selection of three different low-pass filters, a -8V or -10 V.



#### Technical Data

| Number of channels                                   | -            | 2             |
|------------------------------------------------------|--------------|---------------|
| Gain                                                 | -            | 10 270        |
| Additional gain                                      | -            | 1 10 (in 0,1) |
| Error (0 60 °C)                                      | %            | <±0,3         |
| typical                                              | %            | <±0,1         |
| Output voltage                                       | V            | 0 ±10         |
| Output current                                       | mA           | 0 ±2          |
| Output impedance                                     | Ω            | 10            |
| Zero point adjustment range                          |              |               |
| referred to input                                    | mV           | -100 500      |
| Output interference signal                           |              |               |
| (0,1 Hz 1 MHz) Amplif. ≤100 Filter off               | $mV_{_{PP}}$ | <20           |
| (0,1 Hz 1 MHz) Amplif. ≤100 Filter 30kHz             | $mV_{_{PP}}$ | <10           |
| (0,1 Hz 1 MHz) Amplif. ≤270 Filter off               | $mV_{_{PP}}$ | <40           |
| (0,1 Hz 1 MHz) Amplif. ≤270 Filter 30kHz             | $mV_{_{PP}}$ | <20           |
| Frequency range ( $20V_{PP}$ ), up to Amplif. 10 270 | kHz          | 0 >90         |
| Low-pass filter                                      | kHz          | 3, 10, 30     |
| Linearity adjustment, second power                   | %            | -3 3 (in 0,1) |
| "Overload" threshold                                 | V            | ≈±10,5        |
| Additional zero point shift                          | V            | -8 or -10     |
| or taring range                                      | V            | 0 –10         |
| Power supply (module)                                | _            | via SCP       |
| Weight                                               | kg           | 0,32          |
| Sensor                                               |              |               |
| Sensor supply (I ref)                                | mA           | 1 or 4        |
| Maximum load (I ref: 4 mA)                           | kΩ           | 5             |
| Minimum load (I ref: 1 mA)                           | kΩ           | 20            |
| Interface, Sensor Detection                          |              |               |
| Connection according to IEEE 1451.4                  | _            | -             |
| Max. length for extension cable                      | m            | 10            |
| Temperature range for PiezoSmart-coupling            | °C           | -20 85        |

#### Connections

| Signal inputs              | Туре 103 ( | Fischer, 5 pin) |
|----------------------------|------------|-----------------|
| Signal outputs             | Туре       | BNC neg.        |
| Actuation, outputs, supply | Туре 64 р  | in DIN41612     |

This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.

©2007, Kistler Instrumente AG, Eulachstrasse 22, 8408 Winterthur, Switzerland Tel. +41 52 224 11 11, Fax +41 52 224 14 14, info@kistler.com, www.kistler.com

Page 7/13



#### Needle Lift Amplifier Type 5247

The needle lift measurement is used to determine the injection point (start, duration, end) in Diesel engines. In order to be able to measure the needle lift in injection nozzles, the needle holder in the injection nozzle must be fitted with a Hall sensor. The voltage change at the Hall sensors provides information on the movement of the injection needle. The needle lift function is a standard measurand for Diesel engine or injection system development.

The microprocessor-controlled 2-channel needle lift amplifier has differential inputs as well as a power supply for Hall sensors. An automatic zero correction which can be activated provides compensation for the temperature-dependent zero point of the Hall sensor. An autorange device also facilitates amplifier adjustment. Interference suppression is guaranteed by a differential amplifier input stage.



#### Technical Data

| Number of channels                    | -        | 2              |
|---------------------------------------|----------|----------------|
| Input voltage range, absolute         | V        | 0 ±12          |
| Gain                                  |          | 0,8 75         |
| Error                                 |          |                |
| with gain <2                          | %        | <±1,5          |
| with gain >2                          | %        | <±1            |
| Input voltage range, differential     | $V_{pp}$ | 0 10           |
| Output voltage                        | V        | 0 ±10          |
| Output current                        | mA       | 0 ±2           |
| Output impedance                      | Ω        | 10             |
| Frequency range (20 V <sub>PP</sub> ) | Hz       | 0 90 000       |
| Adjustable output offset in 1 V steps | V        | +18            |
| Max. voltage between sensor-GND       | V        | <±50           |
| and output/supply-GND                 |          |                |
| Power supply (module)                 | -        | via SCP        |
| Sensor                                |          |                |
| Supply voltage                        | V        | 12             |
| Error                                 | %        | <±2            |
| Maximum supply current                | mA       | 15             |
| Connections                           |          |                |
| Actuation outputs supply              | Type 6   | 1 nin DIN/1612 |

#### Type 64 pin DIN41612 Actuation, outputs, supply Binder Serie 711 Sensor Туре Analog output Type

#### Automatic Amplifier Adjustment

On activation of the automatic gain adjustment, the output signal is amplified to maximum 80 % of FS (8 V or -8 V). Depending on the output signal, Autorange lasts for several cycles and up to 600 ms. This function is carried out via the CAN bus or by pressing a button. With button actuation a message appears via the CAN bus.

#### **Automatic Zero Point Correction**

The automatic zero point correction determines the cycle period duration of the injections and corrects the output signal in the middle of the period to zero. A single or continuous automatic zero point correction is possible. This function is performed via the CAN bus or at the press of a button. With button actuation, a single zero point correction takes place with a message via the CAN bus.

Page 8/13

BNC

This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.

# **≮ISTLER**

#### measure. analyze. innovate.

# pMax Module Type 5269 for Measuring and Monitoring Maximum Pressures

The new two-channel pMax module Type 5269 offers an ideal expansion for the universal Signal Conditioning Platform (SCP) for continuous monitoring and measurement of the cylinder peak pressure pmax on Diesel and spark ignition engines. The SCP charge amplifiers Type 5064A... supply the pMax module with a voltage signal proportional to the cylinder pressure. When a specified threshold value is reached, a warning or a digital emergency stop signal is generated. At the same time, the unit produces an output voltage signal which is proportional to the maximum cylinder pressure of the last combustion cycle. This signal can simply be picked off via the usual analog inputs of the test stand measuring setup. As a result, the pMax module is ideal for the monitoring and measurement of endurance running. Expensive combustion analysis systems can often be replaced. Signal noise, e.g. due to pipe oscillations and valve vibrations, can be effectively suppressed by using a high performance filtering system on the input signal.



#### Functional Description

The pressure signal measured, which comes from the amplifier, is investigated with regard to the pmin and pmax values in each combustion cycle. The data quisition of the pmin and pmax value is done by an analoge peak value memory. These values are recorded and used to determine the peak-peak value of the combustion cycle concerned. A distinction is made between three measuring modes: "peak - peak", "(peak - peak) + pInlet" and "(peak - peak) + const. plnlet". Depending on the measuring method selected, the maximum pressure which is output represents the pure peak-peak value of the combustion cycle or a peak-peak value corrected by either the constant induction-pressure value or the measured induction pressure value. The maximum pressure values measured can be averaged over a selectable number of combustion cycles (n = 1...50) for the analog output. The pressure signal measured is constantly monitored in relation to various criteria. When certain events are recorded, an "emergency stop

signal" is triggered. An action (shutting off the engine, changing the rate of injection etc.) can thereby be initiated manually or automatically. Three thresholds are used for signal monitoring: the min. threshold, the max. threshold and the emergency stop threshold. These thresholds can be set with respect to one another so that a large number of possible situations can be monitored according to individual requirements. A cycle monitoring system investigates the quality of the pressure signal and indicates If a "meaningful" pressure signal is no longer detected, because for example the measuring chain breaks down or the speed drops below 100rpm.If the max. threshold is exceeded by more than a selectable number (based on the last 50 cycles), an emergency stop is triggered. If the emergency threshold is exceeded on any one occasion, an emergency stop signal is likewise output. Failure of the cycle detection also leads to a stop signal, since in this case monitoring can no longer be guaranteed. In addition, an overload at the input of the pMax module produces an emergency stop. The measurement which has been started with the command "Measure" on the Graphical User Interface (GUI), also continues to run in the event of an emergency stop until a "Reset" is carried out. Analog output of the pmax values can, on the one hand, take place continuously via the two BNC connections (pmax Out) or via SCP analog output card Type 5225A1. On the other hand, the 40 pmax values before and the 10 values after an emergency event are recorded in a memory and remain available until a reset or a new measurement is carried out. This history allows the reasons for an emergency event to be investigated and any appropriate adjustments made. For the monitoring, individual pmax values of a combustion cycle are always observed. The various statuses of the pmax monitoring are additionally visually indicated with LEDs. The various ancillary functions can be utilized using the integral D-Sub 15 neg. connector. For example, the cycle monitoring can be switched off, the analog inlet of the induction pressure measured can be undertaken and an emergency stop circuit via several pMax modules can be set up with the digital output for the emergency signal.

Page 9/13

This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.



## measure. analyze. innovate.

#### Technische Daten

| Inputs for pMax Analysis                 |   |       |
|------------------------------------------|---|-------|
| Number of cylinder pressure channels     |   |       |
| (input for p cylinders A & B)            | - | 2     |
| Input for boost pressure (pInlet)        | _ | 1     |
| Analog input voltage                     |   |       |
| (p cylinder A, p cylinder B, pInlet)     | V | 0 ±10 |
| Signal Processing                        |   |       |
| Input voltage ranges FS range (3 ranges) | V | 010   |
|                                          |   | _8 10 |

|                                           |         | -8 10        |
|-------------------------------------------|---------|--------------|
|                                           |         | -1010        |
| Speed range                               | 1/min   | 100 >6 000   |
| TP-SC filter (5th order, Bessel)          | kHz     | 5, 10, off   |
| Frequency range with TP filter "off"      | kHz     | 0 ≈17        |
| Resolution                                | bit     | 12           |
| Number of combustion cycles for creating  |         |              |
| pmaxppav by averaging pmaxpp              | ASP     | 1 50         |
| Sampling rate per channel                 | /ASP    | 1            |
| (analog peak value memory)                |         |              |
| Number of overranges th_pmax for          |         |              |
| emergency stop                            | /50 ASP | 1 50         |
| Threshold values for                      |         |              |
| (th_pmax, th_pmin, th_pstop), per channel | -       | 3            |
| threshold pmax_A, pmax_B                  | M.U.    | 1,0 4 350    |
| threshold pmin_A, pmin_B                  | %pmax   | 1 99         |
| threshold pstop                           | M.U.    | 1,0 4 350    |
| Input overload at                         | V       | FSRange ±0,5 |

| Analog Outputs for Peak-Peak Pres | sure |        |
|-----------------------------------|------|--------|
| Output voltage ranges             |      |        |
| (pmax Out A/B) selectable         | V    | 0 5    |
|                                   |      | 010    |
|                                   |      | -8 10  |
|                                   |      | -10 10 |
| Output current                    | mA   | 0 ±2   |
| Output resistance                 | Ω    | 10     |
| Error                             | %    | <±1    |
|                                   |      |        |

| Output interference   | signal (0,1Hz 1MHz) | mVpp   | <10              |
|-----------------------|---------------------|--------|------------------|
| Zero error            |                     | mV     | ±10              |
|                       |                     |        |                  |
| Digital Outputs       |                     |        |                  |
| Digital warning outp  | uts                 | -      | 4 (2/Kanal)      |
| Digital stop output   |                     | -      | 1 /Modul         |
| Current loading (con  | stant)              | mA     | <100             |
| Pulsed current loadin | ıg (<0,1 s)         | mA     | <300             |
| Resistance in the pov | vered-up condition  | Ω      | <50 (typ. 30)    |
| Continuous voltage    |                     | V      | <±42             |
| Voltage between out   | puts and            |        |                  |
| protective ground     |                     | Vrms   | <30              |
| Digital Inputs        |                     |        |                  |
| Cycle monitoring      | deactivate          | V      | 3 30             |
|                       | activate            | V      | <2               |
|                       | or Input open       |        |                  |
| Trigger current       |                     | mA     | 0,6 9            |
| General Information   |                     |        |                  |
| Weight                |                     | kg     | 0,3              |
| Display               |                     |        |                  |
| LED for warning sign  | als                 |        |                  |
| MinChA, MinCh         |                     | _      | (yellow) 2       |
| MaxChA, MaxC          |                     | _      | (red) 2          |
| LED for emergency s   |                     |        | (100) 2          |
| Stop                  |                     | _      | (red) 1          |
| LED for error display |                     |        | (100) 1          |
| Error                 |                     | _      | (red) 1          |
|                       |                     |        |                  |
| Connections           |                     |        |                  |
| Signal inputs and out |                     |        |                  |
| (boost pressure, Eme  | rgency stop etc.)   | Typ D- | -Sub 15-pin neg. |

| Signal inputs and outputs             |     |                   |
|---------------------------------------|-----|-------------------|
| (boost pressure, Emergency stop etc.) | Тур | D-Sub 15-pin neg. |
| Signal inputs (input cylinders A & B) | Тур | BNC neg.          |
| Signal outputs                        | Тур | BNC neg.          |
| Trigger, supply                       | Тур | 64-pin DIN 41612  |

| Included Accessories                            | Type/Art. No. |
|-------------------------------------------------|---------------|
| <ul> <li>D-Sub connector 15-pin pos.</li> </ul> | 7.640.049     |
| with soldered connection                        |               |
| • 2 Connecting cable BNC pos., I = 0,2 m        | 1601B0,2      |
| Optional Accessories                            |               |
| Optional Accessories                            |               |

| • D-Sub connector 15-pin pos. | 7.640.090 |
|-------------------------------|-----------|
| with screw connection         |           |

This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.

measure. analyze. innovate.

#### Amplifier Interface Type 5613A1Q01

The measuring module Type 5613A1Q01 is a microprocessorcontrolled 2-channel amplifier with analog signal conditioning and is used for interfacing to external at-side amplifiers or transmitters. With the amplifier interface Type 5613A1Q01, a piezoresistive injection pressure measuring system can be operated with Type 4067...A0/A2 and Type 4618. In this case, the amplifier interface Type 5613A1Q01 supplies the piezoresistive amplifier Type 4618 with its power supply, in which the output signal in Type 5613A1Q01 is simply looped through.

#### Voltage Amplifier Type 5227A1Q01

The measuring module Type 5227A1Q01 is a microprocessorcontrolled 2-channel voltage amplifier with analog signal conditioning. It is equipped with differential inputs with a common ground and is used mainly when signal sources have different potentials. With four permanently set gain values, it is suited to amplify any voltage signals.





#### Technical Data

| Number of channels                 | -            | 2             |
|------------------------------------|--------------|---------------|
| Measuring range (when gain = 1)    | V            | ±10           |
| Gain, adjustable                   | -            | 1/2/5/10      |
| Error (0 60 °C)                    | %            | <±0,5         |
| Input impedance                    | MΩ           | 10            |
| Output voltage                     | V            | 0 ±10         |
| Output current                     | mA           | 0 ±2          |
| Output impedance                   | Ω            | 10            |
| Zero point error                   | mV           | <±10          |
| when gain = 10                     | mV           | <±20          |
| Output noise signal (0,1 Hz 1 MHz) | $mV_{_{PP}}$ | <10           |
| Frequency range (20 $V_{pp}$ )     |              |               |
| –3 dB                              | kHz          | 0 >50         |
| -5 %                               | kHz          | 0 >30         |
| Max. voltage between sensor GND    |              |               |
| and output/supply GND              | V            | <±50          |
| Common mode noise rejection        |              |               |
| (0 100 Hz)                         | dB           | >70           |
| Weight                             | kg           | 0,21          |
| Power supply (module)              | _            | via SCP       |
|                                    |              |               |
| Connections                        |              |               |
| Signal inputs                      | Туре         | BNC neg.      |
| Signal outputs                     | Туре         | BNC neg.      |
| Actuation, outputs, supply         | Type 64      | pin DIN 41612 |
|                                    |              |               |

#### **Technical Data**

| Number of channels                        | _            | 2       |
|-------------------------------------------|--------------|---------|
| Measuring range                           | V            | ±10     |
| Gain                                      | -            | 1       |
| Error (0 60 °C)                           | %            | <±0,1   |
| Input impedance                           | kΩ           | >300    |
| Output voltage                            | V            | 0 ±10   |
| Output current                            | mA           | 0 ±2    |
| Output impedance                          | Ω            | 10      |
| Zero point error                          | mV           | <±2     |
| Output interference signal (0,1 Hz 1 MHz) | $mV_{_{PP}}$ | <10     |
| Frequency range (20 V <sub>PP</sub> )     | kHz          | 0 >50   |
| Power supply (module)                     | _            | via SCP |
| Weight                                    | kg           | 0,16    |

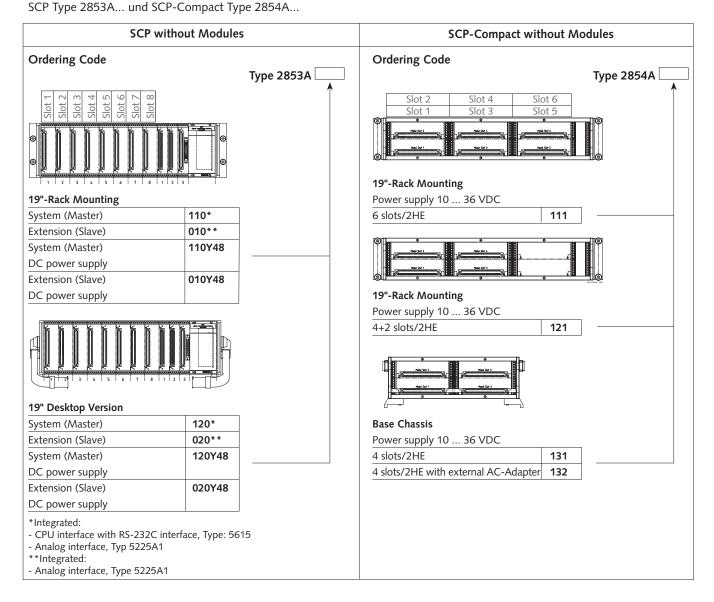
#### Power supply of the at-site amplifier

| Power supply                              | VDC | 24  |
|-------------------------------------------|-----|-----|
| Current consumption per at-site amplifier | mA  | <45 |

#### Connections

| Signal inputs (on-site amplifier) | Туре      | D-Sub 9f              |  |
|-----------------------------------|-----------|-----------------------|--|
| Signal outputs                    | Туре      | BNC neg.              |  |
| Actuation, outputs, supply        | Туре 64 р | Type 64 pin DIN 41612 |  |
| Connecting cable to               | Туре      | 1200A29               |  |
| Amplifier Type 4618A              |           |                       |  |

#### Page 11/13


This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.





#### **Order form with Ordering Code** Signal Conditioning Platform Base Unit

Please always place your order with this form.



#### Modules for the Base Units SCP and SCP-Compact

| Quantity | Туре      |                                                               |
|----------|-----------|---------------------------------------------------------------|
|          | 5064A1    | 2-channel charge amplifier without sensor identification      |
|          | 5064A2    | 2-channel charge amplifier with sensor identification         |
|          | 4665      | 2-channel piezoresistive amplifier with sensor identification |
|          | 5247      | 2-channel needle lift amplifier for hall sensors              |
|          | 5269      | 2-channel pMax Module                                         |
|          | 5613A1Q01 | 2-channel amplifier interface                                 |
|          | 5227A1Q01 | 2-channel voltage amplifier                                   |
|          | 5700A09   | Dummy front plate                                             |
|          |           |                                                               |

This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.

©2007, Kistler Instrumente AG, Eulachstrasse 22, 8408 Winterthur, Switzerland Tel. +41 52 224 11 11, Fax +41 52 224 14 14, info@kistler.com, www.kistler.com

Page 12/13



## measure. analyze. innovate.

| <ul> <li>Included Accessories</li> <li>for SCP and SCP-Compact</li> <li>SCP instruction manual 002-291 incl. CD-ROM with configuration Software</li> <li>Power cable</li> </ul> | Type/Art. No. | <b>Optional Accessories</b><br>Input adapter for the connection of piezoelec<br>out sensor identification to amplifiers with s<br>tion.                           |                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| <ul> <li>Null modem cable wire to connect<br/>SCP and PC/Host<br/>(not included with extension rack)</li> </ul>                                                                 | 1200A27       | for SCP and SCP-Compact<br>• Adapter BNC neg. → TRIAX neg.<br>• Adapter KIAG 10-32 neg. → TRIAX neg.                                                              | <b>Type/Art. No.</b><br>1704A1<br>1704A2 |
| <ul> <li>Power supply (AC Adapter)</li> <li>90 260 VAC/50 60 Hz</li> <li>only for Type 2854A132</li> </ul>                                                                      | 5781A1        | <ul> <li>Adapter M4x0,35 neg. → TRIAX neg.</li> <li>Adapter TRIAX pos. → BNC pos.</li> <li>Adapter M3x0,35 neg. → TRIAX neg.</li> </ul>                           | 1704A3<br>1704A4<br>1704A5               |
| CAN-Bus connecting cable of the extension unit, only for Type 2853A010, 2853A020                                                                                                | 5.590.239     | <ul> <li>PiezoSmart Extension cable<br/>(TRIAX neg. – TRIAX pos.)</li> <li>CAN-Bus connecting cable of the</li> </ul>                                             | 1987B<br>5.590.239                       |
| <ul> <li>Connector for DC power supply,<br/>only for Type 2853AY48, 2854A111,<br/>2854A121 and 2854A131</li> </ul>                                                              | 5.211.384     | <ul> <li>extension unit, l = 0,5 m</li> <li>Power supply (AC Adapter)</li> <li>90 260 VAC/50 60 Hz</li> <li>only for Type 2854A111, 2854A121, 2853AY48</li> </ul> | 5781A1                                   |
|                                                                                                                                                                                 |               | <ul> <li>Null modem cable wire to connect SCP<br/>and PC/Host (cable length 1 10 m)</li> <li>USB/RS-232C Adapter</li> <li>TEDS Editor for PC</li> </ul>           | 1200A27sp<br>2867<br>2839A-01-003        |

- TEDS Editor for Pocket PC 2839A-01-013
- D-Sub connector 37 pin pos.

This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.

©2007, Kistler Instrumente AG, Eulachstrasse 22, 8408 Winterthur, Switzerland Tel. +41 52 224 11 11, Fax +41 52 224 14 14, info@kistler.com, www.kistler.com

7.640.062